Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Water Res ; 266: 122386, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39243460

ABSTRACT

The solid pore characteristics are commonly considered as the important influential factors on waste-activated sludge (WAS) dewaterability, and should be related to the cohesive force of bio-flocs dominated by cation-organic interactions at solid-water interface. This study aimed to establish an approach for regulating the solid pore structure of WAS by cationic regulation. The influential mechanism of WAS dewaterability was accordingly explored from the perspective of the pore characteristics dominated by cation-organic interactions. Primarily, with the gradient removal or addition of bivalent cations, the varying pore structure of WAS flocs was tracked by in-situ synchrotron X-ray computed microtomography imaging technique (CMT). The three-dimensional visual model was established to quantify the pore structure parameters of WAS flocs. Following the visualization analysis, the artificial intelligence means, the gradient-weighted class activation mapping (Grad CAM) of three-dimensional convolutional neural network (3D-CNN), was applied for the first time to explore the linkages among solid surface properties, solid pore structure, water occurrence states and sludge dewaterability. It was found that the number and volume of isolated pores jointly determined the mobility and the fractions of vicinal water and interstitial water (p-value ≤ 0.02); also, the decreasing polar or acid-based interfacial free energy with the cationic addition was accompanied with the decreasing isolated pore mean-volume (Pearson coefficient=-0.77, p-value < 0.01). These results indicated that the pore structure characteristics determined the water occurrence states, but the solid porosity strongly depended on the interfacial properties. Accordingly, the molecular docking was applied to explore the interfacial reaction mechanism between Ca2+/Mg2+ and solid compositions in terms of complexation sites, molecular dynamics and free energy calculations. As a result, how the cation-organic interactions affected the pore characteristics through solid surface modification could be clarified, which is expected to serve as theoretical foundation for the development of novel sludge conditioning technologies, i.e., more efforts should be devoted to increasing the dense degree of sludge particles through weakening the hydration repulsion of solid surface.

2.
Water Res ; 247: 120765, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37907011

ABSTRACT

The sustainable application of thermal sludge drying process is limited by the high energy consumption due to the phase-change latent heat of moisture. This study proposed that the ultrahigh pressure filtration could realize the non-phase-change sludge drying. The lowest water content of 28.12 wt.% was realized by the filtration pressure of 21 MPa for the excess sludge with polyaluminium chloride as the conditioning agent. With the stepwise increase of filtration pressure employed (5-21 MPa), the diameter of solid pores was gradually narrowed to the same order of magnitude with the thickness of vicinal water film (i.e., 1-10 nm). As a result, the capillary water was transformed into the vicinal water, and the solid-water interface interaction played more crucial roles in water occurrence states. However, Hagen-Poiseuille equation was introduced to estimate the pore water outflow based on the pore wall hydrophilicity and the external filtration pressure, which implied that there can be always a sufficiently large driving force to maintain the water outflow rate no matter how the pore diameter is small and the sidewall is hydrophilic. Typically, the fitting results of excess sludge (R2=0.985, p-value<0.01) indicated that the pressure gradient of 2.11 × 109 Pa/m was required to maintain the pore water flow rate of 1.38 × 10-15 m3/s with the median pore diameter of 5.33 × 10-7 m. All these findings broke through the conventional cognition that only thermal drying process can decrease the sludge water content below 60 wt.%, and facilitated energy saving of sludge dewatering process through non-phase-change separation, i.e., ultrahigh pressure filtration.


Subject(s)
Filtration , Sewage , Sewage/chemistry , Filtration/methods , Water/chemistry , Desiccation , Hydrophobic and Hydrophilic Interactions , Waste Disposal, Fluid/methods
3.
Water Res ; 244: 120496, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37633208

ABSTRACT

This study proposed to improve the dewaterability of waste-activated sludge (WAS) through crystallization-driven evolution of water occurrence states. Primarily, the feasibility of clathrate hydrate (i.e., CO2 hydrate) formation in WAS was examined. The thermodynamic analysis indicated that the CO2 hydrate formation with the excessive water in WAS followed pseudo-first-order kinetics, and fit of the data yielded a kobs value of 3.905 × 10-5 L∙mol-1∙s-1 for 274.15 K. With the water conversion efficiency of 100%, the crystallization-dissociation process of CO2 hydrate significantly improved the dewaterability of WAS in term of capillary suction time (CST) decreasing from 251.5 s to 57.4 s. Also, the relief of gas pressure can induce the hydrate dissociation, which creates a novel way to recycle CO2 gas and save the consumption of chemicals required by sludge dewatering process. Regarding the mechanism of hydrates-based sludge dewatering, the evolution of water occurrence state was investigated. The in-situ synchrotron X-ray computed microtomography visually analyzed the micro-scale porosity and interstitial water of WAS flocs. The model of three-dimensional pore structure was established and the porosity parameters of solid aggregates were determined. It was found that the volume of connected pores and the total pore volume fraction of solid compositions increased. But the mean volume and mean area of isolated pores simultaneously decreased by 14.6% and 12.4%, respectively, which meant that the steric hindrance caused by isolated pores was weakened due to the reduced solid-water contact area. In addition, the crystallization of water caused the reformation of conformation arrangement of vicinal water and solid molecules, which highly organized the water molecules into the crystal structure. Accordingly, an estimation method for vicinal water layer thickness was developed based on atom force microscope. The thickness of vicinal water layer was found to be reduced by 77.4% and the hydration repulsion among solid compositions was correspondingly weakened, which facilitated the aggregation of solid compositions, and the relatively separated hydrate phase and solid phase could be formed. All the above results open up a novel strategy for enhanced water-solid separation of WAS through the crystallization-driven evolution of water occurrence states. As distinguished from the conventional approaches, the hydrates-based sludge dewatering enhances the water-solid separation only with regulating the spatial arrangement of water-solid molecules, but without altering the chemical compositions. Thus, more chances can be created to increase the environmentally friendly attributes related to WAS dewatering.


Subject(s)
Sewage , Water , Sewage/chemistry , Water/chemistry , Crystallization , Carbon Dioxide , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL