Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6126, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38480842

ABSTRACT

We demonstrate an adaptation of deep learning for label-free imaging of the micro-scale lymphatic vessels and aqueous veins in the eye using optical coherence tomography (OCT). The proposed deep learning-based OCT lymphangiography (DL-OCTL) method was trained, validated and tested, using OCT scans (23 volumetric scans comprising 19,736 B-scans) from 11 fresh ex vivo porcine eyes with the corresponding vessel labels generated by a conventional OCT lymphangiography (OCTL) method based on thresholding with attenuation compensation. Compared to conventional OCTL, the DL-OCTL method demonstrates comparable results for imaging lymphatics and aqueous veins in the eye, with an Intersection over Union value of 0.79 ± 0.071 (mean ± standard deviation). In addition, DL-OCTL mitigates the imaging artifacts in conventional OCTL where the OCT signal modelling was corrupted by the tissue heterogeneity, provides ~ 10 times faster processing based on a rough comparison and does not require OCT-related knowledge for correct implementation as in conventional OCTL. With these favorable features, DL-OCTL promises to improve the practicality of OCTL for label-free imaging of lymphatics and aqueous veins for preclinical and clinical imaging applications.


Subject(s)
Deep Learning , Lymphatic Vessels , Animals , Swine , Tomography, Optical Coherence/methods , Eye , Lymphatic Vessels/diagnostic imaging , Lymphography/methods
2.
Invest Ophthalmol Vis Sci ; 64(15): 22, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38108688

ABSTRACT

Purpose: The purpose of this study was to determine posture-induced changes in arterial blood pressure (ABP), intraocular pressure (IOP), orbital pressure (Porb), intracranial pressure (ICP), and jugular vein pressure (JVP) at various tilt angles in an in vivo pig. Methods: Anesthetized and ventilated pigs (n = 8) were placed prone on a tiltable operating table. ABP, IOP, Porb, ICP, and JVP were monitored while the table was tilted at various angles between 15 degrees head up tilt (HUT) and 25 degrees head down tilt (HDT) either in stepwise changes (5 degrees per step) or continuously. The mean pressure was calculated from digitized pressure waveforms from each compartment. For stepwise changes in tilt angle the pressures were plotted as a function of tilt angle. For continuous tilt changes, the pressures were plotted as a function of time. Results: In the case of stepwise changes, ABP remained relatively stable whilst IOP, Porb, ICP, and JVP demonstrated significant differences between most angles (typically P < 0.0001). The difference was greatest for IOP (P < 0.0001) where the average IOP increased from 13.1 ± 1.23 mm Hg at 15 degrees HUT to 46.3 ± 2.03 mm Hg at 25 degrees HDT. The relationship between pressure and tilt angle was almost linear for ICP and JVP, and sigmoidal for IOP and Porb. Interestingly, the effect of changes in tilt angle occurred very rapidly, within a few seconds. Conclusions: Our results in a pig model demonstrate that changes in posture (tilt angle) induce rapid changes in IOP, Porb, ICP, and JVP, with IOP affected most severely.


Subject(s)
Arterial Pressure , Jugular Veins , Swine , Animals , Intracranial Pressure , Posture , Intraocular Pressure
3.
Sci Rep ; 13(1): 18923, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919331

ABSTRACT

Microvascular dysfunction is the underlying pathological process in many systemic diseases. However, investigation into its pathogenesis is impeded by the accessibility and complexity of the microvasculature within different organs, particularly for the central nervous system. The retina as an extension of the cerebrum provides a glimpse into the brain through which the microvasculature can be observed. Two major questions remain unanswered: How do the microvessels regulate spatial and temporal delivery to satisfy the varying cellular demands, and how can we quantify blood perfusion in the 3D capillary network? Here, quantitative measurements of red blood cell (RBC) speed in each vessel in the field were made in the in vivo rat retinal capillary network using an ultrafast confocal technique with fluorescently labelled RBCs. Retinal RBC speed and number were found to vary remarkably between microvessels ranging from 215 to 6641 microns per second with significant variations spatially and temporally. Overall, the RBC speed was significantly faster in the microvessels in the superficial retina than in the deep retina (estimated marginal means of 2405 ± 238.2 µm/s, 1641 ± 173.0 µm/s respectively). These observations point to a highly dynamic nature of microvasculature that is specific to its immediate cellular environment and is constantly changing.


Subject(s)
Microvessels , Retina , Rats , Animals , Retina/diagnostic imaging , Microvessels/diagnostic imaging , Microvessels/physiology , Perfusion , Erythrocytes/physiology , Brain/blood supply , Retinal Vessels/diagnostic imaging , Retinal Vessels/physiology
4.
Prog Retin Eye Res ; 94: 101134, 2023 05.
Article in English | MEDLINE | ID: mdl-37154065

ABSTRACT

The microcirculation plays a key role in delivering oxygen to and removing metabolic wastes from energy-intensive retinal neurons. Microvascular changes are a hallmark feature of diabetic retinopathy (DR), a major cause of irreversible vision loss globally. Early investigators have performed landmark studies characterising the pathologic manifestations of DR. Previous works have collectively informed us of the clinical stages of DR and the retinal manifestations associated with devastating vision loss. Since these reports, major advancements in histologic techniques coupled with three-dimensional image processing has facilitated a deeper understanding of the structural characteristics in the healthy and diseased retinal circulation. Furthermore, breakthroughs in high-resolution retinal imaging have facilitated clinical translation of histologic knowledge to detect and monitor progression of microcirculatory disturbances with greater precision. Isolated perfusion techniques have been applied to human donor eyes to further our understanding of the cytoarchitectural characteristics of the normal human retinal circulation as well as provide novel insights into the pathophysiology of DR. Histology has been used to validate emerging in vivo retinal imaging techniques such as optical coherence tomography angiography. This report provides an overview of our research on the human retinal microcirculation in the context of the current ophthalmic literature. We commence by proposing a standardised histologic lexicon for characterising the human retinal microcirculation and subsequently discuss the pathophysiologic mechanisms underlying key manifestations of DR, with a focus on microaneurysms and retinal ischaemia. The advantages and limitations of current retinal imaging modalities as determined using histologic validation are also presented. We conclude with an overview of the implications of our research and provide a perspective on future directions in DR research.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/diagnostic imaging , Diabetic Retinopathy/pathology , Microcirculation , Fluorescein Angiography/methods , Retinal Vessels/pathology , Retina , Tomography, Optical Coherence/methods , Blindness
5.
Sci Rep ; 13(1): 7550, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37160984

ABSTRACT

An adequate blood supply to meet the energy demands is essential for any tissue, particularly for high energy demand tissues such as the retina. A critical question is: How is the dynamic match between neuronal demands and blood supply achieved? We present a quantitative assessment of temporal and spatial variations in perfusion in the macular capillary network in 10 healthy human subjects using a non-invasive and label-free imaging technique. The assessment is based on the calculation of the coefficient of variation (CoV) of the perfusion signal from arterioles, venules and capillaries from a sequence of optical coherence tomography angiography images centred on the fovea. Significant heterogeneity of the spatial and temporal variation was found within arterioles, venules and capillary networks. The CoV values of the capillaries and smallest vessels were significantly higher than that in the larger vessels. Our results demonstrate the presence of significant heterogeneity of spatial and temporal variation within each element of the macular microvasculature, particularly in the capillaries and finer vessels. Our findings suggest that the dynamic match between neuronal demands and blood supply is achieved by frequent alteration of local blood flow evidenced by capillary perfusion variations both spatially and temporally in the macular region.


Subject(s)
Hemodynamics , Macula Lutea , Humans , Macula Lutea/diagnostic imaging , Fovea Centralis , Retina , Veins
6.
Exp Eye Res ; 230: 109445, 2023 05.
Article in English | MEDLINE | ID: mdl-36948437

ABSTRACT

The permeability of iris blood vessels has an important role in maintaining aqueous humor (AH) homeostasis, contributing to variation in iris volume and probably the pathogenesis of angle closure glaucoma. This study investigates the permeability of the iris microvasculature to plasma-derived protein and correspond it with the morphologic characteristics of vascular mural cells (MCs). Twenty-two enucleated porcine eyes were used in this study. 12 eyes were micro-perfused with vehicle alone as control or with FITC-albumin as a marker of protein leakage and histological sections subsequently made to examine for FITC-albumin presence. The other 10 eyes were immunolabeled via micro-perfusion for αSMA and VE-cadherin to investigate their topographic distribution in the porcine iris vasculature, and to cross correspond with the locations of FITC-albumin deposits. Distribution of FITC-signals exhibited a site-dependent pattern and time-dependent change in the iris. Fluorescence was initially detected around capillaries in the superficial and deep layer of the iris microvascular network. The pupillary region and the iris root retained more fluorescent signal than the iridal ciliary region. At low magnification, αSMA labelling displayed a regional variation which was inversely correlated with vascular permeability. At the cellular level, αSMA labeling corresponded with vascular MCs distribution in the iris vascular network. The correspondence between iris microvascular permeability to FITC-albumin and the pattern of αSMA distribution and MCs coverage adds to the understanding of the elements comprising the blood-aqueous barrier with implications for the bio-mechanics of iris volume change.


Subject(s)
Blood-Aqueous Barrier , Iris , Swine , Animals , Iris/metabolism , Pupil , Aqueous Humor/metabolism , Capillary Permeability
7.
Exp Eye Res ; 228: 109386, 2023 03.
Article in English | MEDLINE | ID: mdl-36657697

ABSTRACT

We have previously reported that porcine retinal veins can be contracted by vasoactive factors such as endothelin-1, but it is still unknown which cells play the major role in such contraction responses. This study seeks to confirm whether retinal vein endothelial cells play a significant role in the endothelin-1 induced contraction of porcine retinal veins. This is a novel study which provides confirmation of the endothelial cells' ability to contract retinal veins using a live vessel preparation. Retinal veins were isolated from porcine retina and cannulated for perfusion. The vessels were exposed to extraluminal delivery of endothelin-1 (10-8 M) and change in vessel diameter recorded automatically every 2 s. A phase contrast objective lens was also used to capture images of the endothelial cell morphometries. The length, width, area, and perimeter were assessed. In addition, vein histology and immuno-labeling for contractile proteins was performed. With 10-8 M endothelin-1 contractions to 63.6% of baseline were seen. The polygonal shape of the endothelial cells under normal tone became spindle-like after contraction. The area, width, perimeter and length were significantly reduced by 54.8%, 48.1%, 28.5% and 10.5% respectively. Three contractile proteins, myosin, calponin and alpha-SMA were found in retinal vein endothelial cells. Retinal vein endothelial cells contain contractile proteins and can be contracted by endothelin-1 administration. Such contractile capability may be important in regulating retinal perfusion but could also be a factor in the pathogenesis of retinal vascular diseases such as retinal vein occlusion. As far as we are aware, this is the first study on living isolated veins to confirm that endothelial cells contribute to the endothelin-1 induced contraction.


Subject(s)
Retinal Artery , Retinal Vein , Swine , Animals , Endothelin-1 , Endothelial Cells , Retinal Artery/physiology , Endothelium, Vascular , Contractile Proteins , Muscle Contraction , Endothelins/pharmacology
8.
Exp Eye Res ; 226: 109309, 2023 01.
Article in English | MEDLINE | ID: mdl-36400284

ABSTRACT

Endothelium phenotype is known to be closely associated with flow shear stress. This study is to determine the topographic distribution of endothelial cells and the phenotype of different quadrants and regions of Schlemm's canal using human donor eyes. This study infers differences in flow dynamics based on cell shape and intracellular structure. The Schlemm's canal from 15 human donor eyes were either perfusion labelled using silver stain or dissected for float labeling with Phalloidin to enable visualization of endothelial cell border and intracellular structure. Data were acquired for endothelial cells from the outer and inner wall of Schlemm's canal and grouped according to quadrant of origin. Measurements included endothelial cell length, width, area, and aspect ratio and compared between quadrants. Endothelial cells are mostly spindle-shape and the cell size on the outer wall are larger and longer than those from the inner wall. Significant differences in endothelial cell size and shape were seen in different quadrants. The endothelial cells have varied shapes and orientations close to large ostia in the outer wall and remarkably long endothelial cells were found in the walls of collector channels. F-actin aggregation was found at all endothelial cell borders, and inside some of the endothelial cytoplasm. The presence of various spindle shapes, significant phenotype heterogeneity and F-actin aggregation of endothelial cells indicates aqueous humor flow likely creates variations in shear stress within Schlemm's canal. Further investigation of the relationship between the phenotype heterogeneity and hydrodynamics of aqueous flow may help us understand the mechanisms of outflow resistance changes in glaucoma.


Subject(s)
Endothelial Cells , Trabecular Meshwork , Humans , Actins , Aqueous Humor , Schlemm's Canal , Sclera , Endothelium
9.
Transl Vis Sci Technol ; 10(1): 29, 2021 01.
Article in English | MEDLINE | ID: mdl-33520424

ABSTRACT

Purpose: To determine the fidelity of optical coherence tomography angiography (OCTA) techniques by direct comparison of the retinal capillary network images obtained from the same region as imaged by OCTA and high-resolution confocal microscope. Method: Ten porcine eyes were perfused with red blood cells for OCTA image acquisition from the area centralis and then perfusion-fixed, and the vessels were labeled for confocal imaging. Two approaches involving post-processing of two-dimensional projection images and vessel tracking on three dimensional image stacks were used to obtain quantitative measurements. Data collected include vessel density, length of visible vessel track, count of visible branch points, vessel track depth, vessel diameter, angle of vessel descent, and angle of dive for comparison and analysis. Results: Comparing vascular images acquired from OCTA and confocal microscopy, we found (1) a good representation of the larger caliber retinal vessels, (2) an underrepresentation of retinal microvessels smaller than 10 µm and branch points in all four retinal vascular plexuses, particularly the intermediate capillary plexus, (3) reduced visibility associated with an increase in the angle of descent, (4) a tendency to loss visibility of vessel track at a branch point or during a sharp dive, and (5) a reduction in visibility with increase in retinal depth on OCTA images. Conclusions: Current OCTA techniques can visualize the retinal capillary network, but some types of capillaries cannot be detected by OCTA, particularly in the middle to deeper layers. Translational Relevance: The information indicates the limitation in clinical use and scopes for improvement in the current OCTA technologies.


Subject(s)
Retinal Vessels , Tomography, Optical Coherence , Capillaries/diagnostic imaging , Fluorescein Angiography , Retina/diagnostic imaging , Retinal Vessels/diagnostic imaging
10.
Invest Ophthalmol Vis Sci ; 61(10): 3, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32749461

ABSTRACT

Purpose: To use structural criteria to reconcile the three-dimensional organization and connectivity of the parafoveal microvasculature. Methods: The parafoveal microvasculature was perfused and labeled in 16 normal human donor eyes for lectin, alpha smooth muscle actin, and filamentous actin. Established structural criteria gathered using confocal microscopy, including vessel diameter, endothelial cell morphology, and presence/density of smooth muscle cells, were used to differentiate arteries, arterioles, capillaries, venules, and veins. Three-dimensional visualization strategies were used to define the connections between retinal arteries and veins within the superficial vascular plexus (SVP), intermediate capillary plexus (ICP), and deep capillary plexus (DCP). Results: The parafoveal microvasculature has two different inflow patterns and seven different outflow patterns. The SVP and ICP were connected to retinal arteries by arterioles. Inflow into the DCP occurred only via small arterioles (a1; mean diameter, 8.3 µm) that originated from the ICP. Direct connections between the DCP and retinal arteries were not identified. Each capillary plexus formed its own venule that drained independently or in conjunction with venules from other plexuses into a retinal vein at the level of the ganglion cell layer. For the DCP, a1 was significantly smaller than its draining venule (mean diameter, 18.8 µm; P < 0.001). Conclusions: The SVP and ICP of the parafoveal microvasculature have both in series and in parallel arterial and venous connections. Arterial supply to the DCP originates from the ICP, but with direct drainage to the retinal vein. These findings may help to develop an understanding of the pattern of retinal lesions characterizing a myriad of retinal vascular diseases.


Subject(s)
Fovea Centralis/blood supply , Microscopy, Confocal , Retinal Artery/diagnostic imaging , Retinal Vein/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Endothelial Cells/cytology , Female , Humans , Imaging, Three-Dimensional , Male , Microvessels/diagnostic imaging , Middle Aged , Muscle, Smooth, Vascular/cytology , Reference Values , Regional Blood Flow/physiology , Tissue Donors , Young Adult
11.
Invest Ophthalmol Vis Sci ; 60(14): 4574-4582, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31675074

ABSTRACT

Purpose: We studied the topographic distribution of contractile protein in different orders of the human macular microvasculature to further understanding of the sites for capillary blood flow regulation. Methods: Nine donor eyes from eight donors were cannulated at the central retinal artery and perfusion labeled for alpha smooth muscle actin (αSMA) and filamentous actin (F-actin). Confocal images were collected from the macula region, viewed, projected, and converted to a 255 grayscale for measurements. The mean intensity was measured for macular arterioles, venules, and capillary segments. The diameter of each vessel segment measured was recorded. The normalized mean intensity values from all images were ranked according to vessel types and size with a total of nine categories. Results: F-actin was present throughout the macular microvasculature whereas αSMA labeling showed variations. Overall, αSMA has a more prominent presence in the macular arterioles than in the macular capillaries and venules, and αSMA strongly labeled the smaller macular arterioles. Some capillaries also labeled positive for αSMA, including some of the capillaries in the innermost capillary ring surrounding the foveola. It was weakly present in the capillaries on the venous side and larger venules. In the larger macular arterioles closer to 100 µm in diameter, αSMA labeling was weakly present and not as ubiquitous as in the smaller arterioles. Conclusions: Nonuniform distribution of contractile proteins in the different types, orders, and sizes of macular microvasculature indicates that these vessels may have different contractile capability and roles in macular flow regulation.


Subject(s)
Actins/metabolism , Retinal Artery/metabolism , Retinal Vein/metabolism , Adult , Aged , Aged, 80 and over , Arterioles/metabolism , Endothelium, Vascular/metabolism , Female , Humans , Male , Microscopy, Confocal , Microvessels , Middle Aged , Regional Blood Flow/physiology , Tissue Donors , Venules/metabolism
12.
Prog Retin Eye Res ; 70: 23-54, 2019 05.
Article in English | MEDLINE | ID: mdl-30769149

ABSTRACT

The central role of the cardiovascular system is to maintain adequate capillary perfusion. The spatially and temporally heterogeneous nature of capillary perfusion has been reported in some organs. However, such heterogeneous perfusion properties have not been sufficiently explored in the retina. Arguably, spatial and temporal heterogeneity of capillary perfusion could be more predominant in the retina than that in other organs. This is because the retina is one of the highest metabolic demand neural tissues yet it has a limited blood supply due to optical requirements. In addition, the unique heterogeneous distribution of retinal neural cells within different layers and regions, and the significant heterogeneity of intraretinal oxygen distribution and consumption add to the complexity. Retinal blood flow distribution must match consumption of nutrients such as oxygen and glucose within the retina at the cellular level in order to effectively maintain cell survival and function. Sophisticated local blood flow control in the microcirculation is likely required to control the retinal capillary perfusion to supply local retinal tissue and accommodate temporal and spatial variations in metabolic supply and demand. The authors would like to update the knowledge of the retinal microvessel and capillary network and retinal oxidative metabolism from their own studies and the work of others. The coupling between blood supply and energy demands in the retina is particularly interesting. We will mostly describe information regarding the retinal microvessel network and retinal oxidative metabolism relevant to the spatial and temporal heterogeneity of capillary perfusion. We believe that there is significant and necessary spatial and temporal heterogeneity and active regulation of retinal blood flow in the retina, particularly in the macular region. Recently, retinal optical coherence tomography angiography (OCTA) has been widely used in ophthalmology, both experimentally and clinically. OCTA could be a valuable tool for examining retinal microvessel and capillary network structurally and has potential for determining retinal capillary perfusion and its control. We have demonstrated spatial and temporal heterogeneity of capillary perfusion in the retina both experimentally and clinically. We have also found close relationships between the smallest arterioles and capillaries within paired arterioles and venules and determined the distribution of smooth muscle cell contraction proteins in these vessels. Spatial and temporal heterogeneity of retinal capillary perfusion could be a useful parameter to determine retinal microvessel regulatory capability as an early assay for retinal vascular diseases. This topic will be of great interest, not only for the eye but also other organs. The retina could be the best model for such investigations. Unlike cerebral vessels, retinal vessels can be seen even at the capillary level. The purpose of this manuscript is to share our current understanding with the readers and encourage more researchers and clinicians to investigate this field. We begin by reviewing the general principles of microcirculation properties and the spatial and temporal heterogeneity of the capillary perfusion in other organs, before considering the special requirements of the retina. The local heterogeneity of oxygen supply and demand in the retina and the need to have a limited and well-regulated retinal circulation to preserve the transparency of the retina is discussed. We then consider how such a delicate balance of metabolic supply and consumption is achieved. Finally we discuss how new imaging methodologies such as optical coherence tomography angiography may be able to detect the presence of spatial and temporal heterogeneity of capillary perfusion in a clinical setting. We also provide some new information of the control role of very small arterioles in the modulation of retinal capillary perfusion which could be an interesting topic for further investigation.


Subject(s)
Retinal Diseases/physiopathology , Retinal Vessels/physiology , Capillaries/physiology , Humans , Oxygen/blood , Regional Blood Flow/physiology , Retina/metabolism , Retinal Diseases/metabolism , Tomography, Optical Coherence
13.
J Biophotonics ; 11(8): e201800070, 2018 08.
Article in English | MEDLINE | ID: mdl-29920959

ABSTRACT

We employ optical coherence tomography (OCT) and optical coherence microscopy (OCM) to study conjunctival lymphatics in porcine eyes ex vivo. This study is a precursor to the development of in vivo imaging of the collecting lymphatics for potentially guiding and monitoring glaucoma filtration surgery. OCT scans at 1300 nm and higher-resolution OCM scans at 785 nm reveal the lymphatic vessels via their optical transparency. Equivalent signal characteristics are also observed from blood vessels largely free of blood (and devoid of flow) in the ex vivo conjunctiva. In our lymphangiography, vessel networks were segmented by compensating the depth attenuation in the volumetric OCT/OCM signal, projecting the minimum intensity in two dimensions and thresholding to generate a three-dimensional vessel volume. Vessel segmentation from multiple locations of a range of porcine eyes (n = 21) enables visualization of the vessel networks and indicates the varying spatial distribution of patent lymphatics. Such visualization provides a new tool to investigate conjunctival vessels in tissue ex vivo without need for histological tissue processing and a valuable reference on vessel morphology for the in vivo label-free imaging studies of lymphatics to follow.


Subject(s)
Conjunctiva/blood supply , Lymphatic Vessels/diagnostic imaging , Lymphography/methods , Tomography, Optical Coherence/methods , Animals , Imaging, Three-Dimensional , Lymphography/instrumentation , Sclera/diagnostic imaging , Swine , Tomography, Optical Coherence/instrumentation
14.
Exp Eye Res ; 172: 36-44, 2018 07.
Article in English | MEDLINE | ID: mdl-29608905

ABSTRACT

We previously demonstrated endothelial phenotype heterogeneity in the vortex vein system. This study is to further determine whether regional differences are present in the cytoskeleton, junctional proteins and phosphorylated tyrosine labeling within the system. The vortex vein system of twenty porcine eyes was perfused with labels for f-actin, claudin-5, VE-Cadherin, phosphorylated tyrosine and nucleic acid. The endothelial cells of eight different regions (choroidal veins, pre-ampulla, anterior ampulla, mid-ampulla, posterior ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein) were studied using confocal microscopy. There were regional differences in the endothelial cell structures. Cytoskeleton labeling was relatively even in intensity throughout Regions 1 to 6. Overall VE-Cadherin had a non-uniform distribution and thicker width endothelial cell border staining than claudin-5. Progressing downstream there was an increased variation in thickness of VE-cadherin labeling. There was an overlap in phosphorylated tyrosine and VE-Cadherin labeling in the post-ampulla, intra-scleral canal and extra-ocular vortex vein. Intramural cells were observed that were immune-positive for VE-Cadherin and phosphorylated tyrosine. There were significant differences in the number of intramural cells in different regions. Significant regional differences with endothelial cell labeling of cytoskeleton, junction proteins, and phosphorylated tyrosine were found within the vortex vein system. These findings support existing data on endothelial cell phenotype heterogeneity, and may aid in the knowledge of venous pathologies by understanding regions of vulnerability to endothelial damage within the vortex vein system. It could be valuable to further investigate and characterize the VE-cadherin and phosphotyrosine immune-positive intramural cells.


Subject(s)
Choroid/blood supply , Cytoskeletal Proteins/metabolism , Endothelium, Vascular/cytology , Muscle, Smooth, Vascular/cytology , Tyrosine/metabolism , Veins/cytology , Actins/metabolism , Animals , Antigens, CD/metabolism , Cadherins/metabolism , Claudin-5/metabolism , Endothelium, Vascular/metabolism , Fluorescent Antibody Technique, Indirect , Microscopy, Confocal , Muscle, Smooth, Vascular/metabolism , Phosphorylation , Swine , Veins/metabolism
15.
Invest Ophthalmol Vis Sci ; 59(3): 1562-1570, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29625480

ABSTRACT

Purpose: To quantify associations between microvascular density and retinal ganglion cell (RGC) axonal volume in the laminar compartments of the human optic nerve head (ONH). Methods: Eleven normal human ONHs were evaluated. Antibodies were used to label the vascular endothelium (factor VIII-related antigen/von Willebrand factor antibody) and RGC axons (neurofilament heavy antibody). Three-dimensional analysis of confocal scanning laser microscope images was used to study microvascular density and RGC axonal volume in the prelaminar, anterior lamina cribrosa, posterior lamina cribrosa, and retrolaminar compartments. Results: Microvascular volume was significantly different between laminar compartments (P < 0.0083) and was greatest in the prelaminar region, occupying 11.7% of tissue volume. Microvascular volume per RGC axonal volume and cumulative capillary length per RGC axonal volume were significantly different between laminar compartments (all P < 0.0083). Both were significantly greater in the posterior laminar cribrosa (27.4% and 2.28 × 10-3 µm/µm3, respectively). Conclusions: Microvascular density is closely coupled to RGC axonal volume in the ONH. The posterior laminar cribrosa is a site of high blood supply as evidenced by a greater ratio of microvascular density to RGC axonal volume. The greater percentage of tissue volume occupied by microvasculature in the prelaminar region may implicate it as a site where significant connections between the central retinal artery and short posterior ciliary arteries occur.


Subject(s)
Axons , Microvessels/cytology , Optic Disk/blood supply , Retinal Ganglion Cells/cytology , Humans , Microscopy, Confocal
16.
Invest Ophthalmol Vis Sci ; 59(1): 108-116, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29332122

ABSTRACT

Purpose: To precisely quantify the macular microvasculature density using microperfusion and labeling techniques in human donor eyes. Such information may be useful in understanding the role of the macular microvasculature in coping with the metabolic requirements of the neurons in this densely packed region, and provide a reference point for clinical studies using recently developed optical imaging techniques. Methods: The macular microvasculature was perfusion-labeled in 18 human donor eyes and optical stacks collected from regions superior, temporal, inferior, and nasal to the foveola using confocal microscopy. The optical slices were separated into the deep macula vascular layer (DL), and the superficial layer (SL) in which all the vessels superficial to the deep macular vessel layer were included. The DL and SL images were analyzed and vessel density measured according to their orientation from the foveola and in foveal and parafoveal regions. Vessel densities were compared across regions and age groups. Results: Both the SL and DL showed an increase in vessel density with increasing eccentricity from the foveal to parafoveal regions. Vessel density was found to rank in the order of inferior > superior > temporal > nasal in both SL and DL layers. The SL vascular density was approximately 31%, whereas DL was approximately 17%. The DL was planar in nature and density not affected by age. Age-related increase in vessel density was observed in the SL. Conclusions: Microperfusion and labeling techniques in combination with confocal microscopy has enabled collection of reliable data on vascular density in the macula region. Regional differences may reflect well-matched vascular supply and neuronal demands. Age-related changes might indicate the importance of stable blood supply for the human macula.


Subject(s)
Fluorescein Angiography/methods , Macula Lutea/blood supply , Microscopy, Confocal/methods , Microvessels/cytology , Retinal Vessels/cytology , Tissue Donors , Tomography, Optical Coherence/methods , Adult , Aged , Female , Fundus Oculi , Humans , Male , Middle Aged , Young Adult
17.
Curr Eye Res ; 43(1): 67-76, 2018 01.
Article in English | MEDLINE | ID: mdl-29043853

ABSTRACT

PURPOSE: The iris allows effective delivery of nutrients into the aqueous humor supplying the surrounded avascular tissues. However, possible underlying mechanisms of the iris vasculature have not been well established. This study aims to quantitatively assess the human iris vascular network, endothelial cell morphometries, and characterize endothelial junctions to better understand the properties of the iris vasculature. MATERIALS AND METHODS: The irises from human donor eyes were dissected and short fixed before float staining for VE-cadherin and claudin-5, f-actin and nuclei and flat-mounted for confocal imaging. The iris microvasculature was studied for its distribution and branch orders. The endothelial and nuclear morphometrics were measured for each vessel order. Characteristics of cellular junction staining and intracellular cytoskeleton were investigated. RESULTS: The human iris vasculature was found to comprise of six orders of arteries, three orders of veins, and capillaries. The endothelial cell shape was long and narrow in all arteries, suggesting a high hemodynamic shear stress. Relatively large vessels ran radially in the superficial two-thirds of the iris, while smaller and denser vessels ran in the deepest third. Significant heterogeneity in vascular diameter, shape of the endothelia and nuclei, and the nuclear position was evident between artery, capillary and vein. Staining of junction proteins VE-cadherin and claudin-5 appeared non-uniform at the cell borders, especially in large veins. CONCLUSIONS: High rates of blood flow and special barrier properties are indicated by the morphological properties of the human iris vasculature. Detailed information of the iris vasculature combined with the inter- and intra-endothelial structure may help us further understand the physiological and pathogenic roles of the iris.


Subject(s)
Endothelium, Vascular/cytology , Iris/blood supply , Microvessels/cytology , Adult , Aged , Female , Humans , Male , Microscopy, Confocal , Middle Aged
18.
Invest Ophthalmol Vis Sci ; 58(9): 3565-3574, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28715592

ABSTRACT

Purpose: The prevailing view is that the human retina is supplied by the central retinal artery (CRA), the short posterior ciliary arteries (SPCAs) support the choroid, and both the CRA and the SPCAs are so-called "end artery" systems. In this study, we investigate whether vascular connections among the retina, choroid, and the optic nerve head (ONH) exist, using selective cannulation and microperfusion-labeling techniques. Methods: The CRA and/or one or more of the SPCAs were selected for cannulation in 18 human donor eyes. Fluorescent probes with different excitation wavelengths were perfused through different arteries on the same eye to distinguish the supply sources of different vascular beds. After labeling and fixation, the ONH region was dissected either longitudinally or transversely as thick sections for confocal microscopy. Retina, choroid, and ONH were imaged from whole-mount specimens. Results: Probes perfused through the CRA or the SPCA alone labeled the microvessels in the retina, choroid, and ONH regions, as well as the optic nerve trunk. The vessels of the lamina cribrosa and the optic nerve trunk were labeled when probes were perfused through the SPCA. Perfusion through both the CRA and SPCA produced double labeling of vessels in the retina, the choroid, and the ONH. Conclusions: The results indicate an inter-relationship of arterial supply to the retina, choroid, and ONH in the human eye. This has important implications in understanding clinical observations and disease mechanisms such as that of glaucoma and ischemic optic nerve disease.


Subject(s)
Choroid/blood supply , Ciliary Arteries/physiology , Optic Disk/blood supply , Retina/physiology , Retinal Artery/physiology , Adult , Aged , Catheterization , Ciliary Arteries/anatomy & histology , Collateral Circulation , Eye Banks , Female , Fluorescent Dyes , Humans , Male , Microscopy, Confocal , Middle Aged , Perfusion Imaging , Retinal Artery/anatomy & histology , Tissue Donors , Young Adult
19.
Invest Ophthalmol Vis Sci ; 57(2): 412-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26848880

ABSTRACT

PURPOSE: To determine whether vascular tone of isolated porcine retinal veins can be modulated by tissue-generated vasoactive factors such as endothelin-1 and adenosine. Such information may be useful in understanding the role of the retinal veins in regulating blood flow, and also provide a model for investigating new hypotheses suggesting a role for vasoactive factors in retinal vascular diseases such as retinal vein occlusion. METHODS: An isolated perfused retinal vein preparation was used for this study. Segments of porcine retinal veins were dissected, cannulated, and perfused, and their diameter was monitored during vasoactive agent application of increasing doses of endothelin-1 (10(-12)-10(-8) M) or adenosine (10(-10)-10(-4) M). Adenosine (10(-6) M) was also applied on veins during preconstriction with endothelin-1 (10(-8) M). The significance of any induced change in vessel diameter was assessed in relation to the baseline vessel diameter prior to any drug delivery. RESULTS: Dose-dependent vasocontractile responses were induced by endothelin-1 administration. Endothelin-1 produced a significant contraction at doses of 10-11 M and above. At 10(-8) M the maximal endothelin-1-induced contractions were to 70.2 ± 2.1% of baseline. Adenosine produced a dose-dependent dilation reaching 113.0 ± 2.4% at 10(-4) M. Adenosine (10(-6) M) induced a significant dilation in endothelin-1 (10(-8) M)-contracted vessels. CONCLUSIONS: Porcine retinal veins can be modulated by both vasocontraction and vasodilation agents, suggesting that the retinal veins may play a regulatory role in the retinal circulation, particularly in regard to the capillary pressure upstream from the draining retinal veins. To our knowledge, this is the first study of vasoactivity in isolated perfused retinal veins, providing an opportunity to study the direct vasoactive effects of specific vasoactive agents.


Subject(s)
Adenosine/pharmacology , Endothelin-1/pharmacology , Muscle, Smooth, Vascular/physiology , Retinal Vein/physiology , Vasoconstriction/physiology , Vasodilation/physiology , Animals , Dose-Response Relationship, Drug , Microscopy, Confocal , Muscle Contraction/drug effects , Perfusion , Sus scrofa , Vasodilator Agents/pharmacology , Vasomotor System/drug effects
20.
Exp Eye Res ; 140: 106-116, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26335631

ABSTRACT

Recently we reported studies of the iris microvasculature and its endothelial cells using intra-luminal micro-perfusion, fixation, and silver staining, suggesting that the iris vascular endothelium may be crucial for maintaining homeostasis in the ocular anterior segment. Here we present information regarding the intracellular structure and cell junctions of the iris endothelium. Thirty-seven porcine eyes were used for this study. The temporal long posterior ciliary artery was cannulated to assess the iris microvascular network and its endothelium using intra-luminal micro-perfusion, fixation, and staining with phalloidin for intracellular cytoskeleton f-actin, and with antibodies against claudin-5 and VE-cadherin for junction proteins. Nuclei were counterstained with Hoechst. The iris was flat-mounted for confocal imaging. The iris microvasculature was studied for its distribution, branch orders and endothelial morphometrics with endothelial cell length measured for each vessel order. Our results showed that morphometrics of the iris microvasculature was comparable with our previous silver staining. Abundant stress fibres and peripheral border staining were seen within the endothelial cells in larger arteries. An obvious decrease in cytoplasmic stress fibres was evident further downstream in the smaller arterioles, and they tended to be absent from capillaries and veins. Endothelial intercellular junctions throughout the iris vasculature were VE-cadherin and claudin-5 immuno-positive, indicating the presence of both adherent junctions and tight junctions between vascular endothelial cells throughout the iris microvasculature. Unevenness of claudin-5 staining was noted along the endothelial cell borders in almost every order of vessels, especially in veins and small arterioles. Our results suggest that significant heterogeneity of intracellular structure and junction proteins is present in different orders of the iris vasculature in addition to vascular diameter and shape of the endothelia. Detailed information of the topography and intracellular structure and junction proteins of the endothelium of the iris microvasculature combined with unique structural features of the iris may help us to further understand the physiological and pathogenic roles of the iris vasculature in relevant ocular diseases.


Subject(s)
Actins/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Claudin-5/metabolism , Cytoskeleton/metabolism , Endothelium, Vascular/cytology , Intercellular Junctions/metabolism , Iris/blood supply , Animals , Ciliary Arteries/metabolism , Endothelium, Vascular/metabolism , Fluorescent Antibody Technique, Indirect , Microscopy, Confocal , Microvessels , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...