Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomicro Lett ; 16(1): 98, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285246

ABSTRACT

Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries. Herein, we report a unique silicon-carbon composite fabricated by uniformly dispersing amorphous Si nanodots (SiNDs) in carbon nanospheres (SiNDs/C) that are welded on the wall of the macroporous carbon framework (MPCF) by vertical graphene (VG), labeled as MPCF@VG@SiNDs/C. The high dispersity and amorphous features of ultrasmall SiNDs (~ 0.7 nm), the flexible and directed electron/Li+ transport channels of VG, and the MPCF impart the MPCF@VG@SiNDs/C more lithium storage sites, rapid Li+ transport path, and unique low-strain property during Li+ storage. Consequently, the MPCF@VG@SiNDs/C exhibits high cycle stability (1301.4 mAh g-1 at 1 A g-1 after 1000 cycles without apparent decay) and high rate capacity (910.3 mAh g-1, 20 A g-1) in half cells based on industrial electrode standards. The assembled pouch full cell delivers a high energy density (1694.0 Wh L-1; 602.8 Wh kg-1) and an excellent fast-charging capability (498.5 Wh kg-1, charging for 16.8 min at 3 C). This study opens new possibilities for preparing advanced silicon-carbon composite anodes for practical applications.

2.
Adv Sci (Weinh) ; 11(6): e2306992, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059835

ABSTRACT

Fe3 O4 is widely investigated as an anode for ambient sodium-ion batteries (SIBs), but its electrochemical properties in the wide operation-temperature range have rarely been studied. Herein, the Fe3 O4 nanoparticles, which are well encapsulated by carbon nanolayers, are uniformly dispersed on the graphene basal plane (named Fe3 O4 /C@G) to be used as the anode for SIBs. The existence of graphene can reduce the size of Fe3 O4 /C nanoparticles from 150 to 80 nm and greatly boost charge transport capability of electrode, resulting in an obvious size decrease of superparamagnetic Fe nanoparticles generated from the conversion reaction from 5 to 2 nm. Importantly, the ultra-small superparamagnetic Fe nanoparticles (≈2 nm) can induce a strong spin-polarized surface capacitance effect at operating temperatures ranging from -40 to 60 °C, thus achieving highly efficient Na-ion transport and storage in a wide operation-temperature range. Consequently, the Fe3 O4 /C@G anode shows high capacity, excellent fast-charging capability, and cycling stability ranging from -40 to 60 °C in half/full cells. This work demonstrates the viability of Fe3 O4 as anode for wide operation-temperature SIBs and reveals that spin-polarized surface capacitance effects can promote Na-ion storage over a wide operation temperature range.

3.
Small ; : e2307494, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041468

ABSTRACT

With rapidly increasing demand for high energy density, silicon (Si) is greatly expected to play an important role as the anode material of lithium-ion batteries (LIBs) due to its high specific capacity. However, large volume expansion for silicon during the charging process is still a serious problem influencing its cycling stability. Here, a Si/C composite of vertical graphene sheets/silicon/carbon/graphite (VGSs@Si/C/G) is reported to address the electrochemical stability issues of Si/graphite anodes, which is prepared by adhering Si nanoparticles on graphite particles with chitosan and then in situ growing VGSs by thermal chemical vapor deposition. As a promising anode material, due to the buffering effect of VGSs and tight bonding between Si and graphite particles, the composite delivers a high reversible capacity of 782.2 mAh g-1 after 1000 cycles with an initial coulombic efficiency of 87.2%. Furthermore, the VGSs@Si/C/G shows a diffusion coefficient of two orders higher than that without growing the VGSs. The full battery using VGSs@Si/C/G anode and LiNi0.8 Co0.1 Mn0.1 O2 cathode achieves a high gravimetric energy density of 343.6 Wh kg-1 , a high capacity retention of 91.5% after 500 cycles and an excellent average CE of 99.9%.

4.
Microorganisms ; 11(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37513017

ABSTRACT

Feline panleukopenia (FPL) is a highly contagious acute infectious disease caused by feline parvovirus (FPV). FPV has also been found in giant pandas with clinical signs of vomiting and mild diarrhea, posing a threat to this vulnerable species. Cleaning and disinfection may be one of the most efficacious ways to prevent FPV spread in the habitat of giant pandas. This study evaluated the inactivation effect of peracetic acid (PAA), povidone-iodine (PVP-I), glutaral and deciquam solution (JM) and Virkon S. The tissue culture infective dose (TCID50) assay indicated that the virus may be totally inactivated by JM, PAA and Virkon S. Meanwhile, the hemagglutination (HA) assay showed a high inactivation efficiency of PAA and Virkon S. The analysis of Western blot revealed that PAA, Virkon S and JM can inhibit the structural protein synthesis. Taken together, our findings demonstrated that PAA could rapidly and efficiently inactivate FPV, representing an efficacious disinfectant for FPV control.

5.
Front Microbiol ; 14: 1087484, 2023.
Article in English | MEDLINE | ID: mdl-36819040

ABSTRACT

Introduction: Pseudorabies virus (PRV) is the pathogenic virus of porcine pseudorabies (PR), belonging to the Herpesviridae family. PRV has a wide range of hosts and in recent years has also been reported to infect humans. N6-methyladenosine (m6A) modification is the major pathway of RNA post-transcriptional modification. Whether m6A modification participates in the regulation of PRV replication is unknown. Methods: Here, we investigated that the m6A modification was abundant in the PRV transcripts and PRV infection affected the epitranscriptome of host cells. Knockdown of cellular m6A methyltransferases METTL3 and METTL14 and the specific binding proteins YTHDF2 and YTHDF3 inhibited PRV replication, while silencing of demethylase ALKBH5 promoted PRV output. The overexpression of METTL14 induced more efficient virus proliferation in PRV-infected PK15 cells. Inhibition of m6A modification by 3-deazaadenosine (3-DAA), a m6A modification inhibitor, could significantly reduce viral replication. Results and Discussion: Taken together, m6A modification played a positive role in the regulation of PRV replication and gene expression. Our research revealed m6A modification sites in PRV transcripts and determined that m6A modification dynamically mediated the interaction between PRV and host.

6.
J Med Virol ; 93(11): 6100-6115, 2021 11.
Article in English | MEDLINE | ID: mdl-34329499

ABSTRACT

N6 -methyladenosine (m6 A) modification is the most common and reversible posttranscriptional modification of RNA in eukaryotes, which is mainly regulated by methyltransferase, demethylase, and specific binding protein. The replication of the virus and host immune response to the virus are affected by m6 A modification. In different kinds of viruses, m6 A modification has two completely opposite regulatory functions. This paper reviews the regulatory effects of m6 A modification on different viruses and provides a reference for studying the regulatory effects of RNA epitranscriptomic modification.


Subject(s)
Adenosine/analogs & derivatives , Viruses/genetics , Adenosine/metabolism , Humans , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Viral/genetics
7.
ACS Appl Mater Interfaces ; 12(40): 44407-44419, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32865389

ABSTRACT

Antiangiogenic therapy is widely administered in many cancers, and the antiangiogenic drug sorafenib offers moderate benefits in advanced hepatocellular carcinoma (HCC). However, antiangiogenic therapy can also lead to hypoxia-driven angiogenesis and immunosuppression in the tumor microenvironment (TME) and metastasis. Here, we report the synthesis and evaluation of NanoMnSor, a tumor-targeted, nanoparticle drug carrier that efficiently codelivers oxygen-generating MnO2 and sorafenib into HCC. We found that MnO2 not only alleviates hypoxia by catalyzing the decomposition of H2O2 to oxygen but also enhances pH/redox-responsive T1-weighted magnetic resonance imaging and drug-release properties upon decomposition into Mn2+ ions in the TME. Moreover, macrophages exposed to MnO2 displayed increased mRNA associated with the immunostimulatory M1 phenotype. We further show that NanoMnSor treatment leads to sorafenib-induced decrease in tumor vascularization and significantly suppresses primary tumor growth and distal metastasis, resulting in improved overall survival in a mouse orthotopic HCC model. Furthermore, NanoMnSor reprograms the immunosuppressive TME by reducing the hypoxia-induced tumor infiltration of tumor-associated macrophages, promoting macrophage polarization toward the immunostimulatory M1 phenotype, and increasing the number of CD8+ cytotoxic T cells in tumors, thereby augmenting the efficacy of anti-PD-1 antibody and whole-cell cancer vaccine immunotherapies. Our study demonstrates the potential of oxygen-generating nanoparticles to deliver antiangiogenic agents, efficiently modulate the hypoxic TME, and overcome hypoxia-driven drug resistance, thereby providing therapeutic benefit in cancer.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Manganese Compounds/pharmacology , Nanoparticles/chemistry , Neovascularization, Pathologic/drug therapy , Oxides/pharmacology , Angiogenesis Inhibitors/chemistry , Animals , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/pathology , Drug Carriers/chemistry , Drug Carriers/pharmacology , Humans , Liver Neoplasms/pathology , Male , Manganese Compounds/chemistry , Mice , Mice, Inbred C3H , Neovascularization, Pathologic/pathology , Oxides/chemistry , Particle Size , Surface Properties , Tumor Cells, Cultured , Tumor Escape/drug effects , Tumor Hypoxia/drug effects
8.
Nat Nanotechnol ; 14(12): 1160-1169, 2019 12.
Article in English | MEDLINE | ID: mdl-31740794

ABSTRACT

Abnormal tumour vasculature has a significant impact on tumour progression and response to therapy. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis and, thus, can be delivered to normalize tumour vasculature. However, a NO-delivery system with a prolonged half-life and a sustained release mechanism is currently lacking. Here we report the development of NanoNO, a nanoscale carrier that enables sustained NO release to efficiently deliver NO into hepatocellular carcinoma. Low-dose NanoNO normalizes tumour vessels and improves the delivery and effectiveness of chemotherapeutics and tumour necrosis factor-related, apoptosis-inducing, ligand-based therapy in both primary tumours and metastases. Furthermore, low-dose NanoNO reprogrammes the immunosuppressive tumour microenvironment toward an immunostimulatory phenotype, thereby improving the efficacy of cancer vaccine immunotherapy. Our findings demonstrate the ability of nanoscale NO delivery to efficiently reprogramme tumour vasculature and immune microenvironments to overcome resistance to cancer therapy, resulting in a therapeutic benefit.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Delayed-Action Preparations/chemistry , Liver Neoplasms/drug therapy , Nanoparticles/chemistry , Neovascularization, Pathologic/drug therapy , Nitric Oxide/administration & dosage , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/therapeutic use , Animals , Carcinoma, Hepatocellular/blood supply , Humans , Liver Neoplasms/blood supply , Male , Mice , Nitric Oxide/therapeutic use , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...