Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 333: 121977, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494230

ABSTRACT

Cyclodextrins (CDs) have been discovered to provide an efficient solution to the limited application of ester aroma molecules used in food, tobacco, and medication due to their strong smell and unstable storage. This work combined molecular modeling and experimental to analyze the conformation and controlled release of isomeric ester aroma compounds/ß-CD inclusion complexes (ICs). The investigation revealed that ester aroma compounds could be effectively encapsulated within the ß-CD cavity, forming ICs with low binding affinity. Furthermore, the key driving forces in ICs were identified as hydrogen bonds and van der Waals interactions through theoretical simulation. Results from the Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments confirmed the intermolecular interaction predicted by the molecular model. Notably, the release rate of aroma compounds from L-menthyl acetate/ß-CD (LMA/ß-CD) IC exceeded that of terpinyl acetate/ß-CD (TA/ß-CD) IC. This difference is attributed to the length of the chain of aroma molecules and the variation in the position of functional groups, influencing the stable formation of ICs with ß-CD. These findings hold potential implications for refining the application of ICs across diverse industries.

2.
Phys Chem Chem Phys ; 25(46): 31667-31682, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37966808

ABSTRACT

Herein, a spiro rhodamine (Rho)-thionated naphthalimide (NIS) electron donor-acceptor orthogonal dyad (Rho-NIS) was prepared to study the formation of a long-lived charge separation (CS) state via the electron spin control approach. The transient absorption (TA) spectra of Rho-NIS indicated that the intersystem crossing (ISC) occurs within 7-42 ps to produce the 3NIS state via the spin orbit coupling ISC (SOC-ISC). The energy order of 3CS (2.01 eV in n-hexane, HEX) and 3LE states (1.68 eV in HEX) depended on the solvent polarity. The 3NIS state having n-π* character and a lifetime of 0.38 µs was observed for Rho-NIS in toluene (TOL). Alternatively, in acetonitrile (ACN), the long-lived 3CS state (0.21 µs) with a high CS state quantum yield (ΦCS, 97%) was produced with the 3NIS state as the precursor and the CS took 134 ps. On the contrary, in the case of the reference Rho-naphthalimide (NI) Rho-NI dyad without thionation of its carbonyl group, a long-lived CS state (0.94 µs) with a high energy level (ECS = 2.12 eV) was generated even in HEX with a lower ΦCS (49%). In the presence of an acid, the Rho unit in the Rho-NIS adopted an open form (Rho-o) and the 3NIS state was produced within 24-47 ps with the 1Rho-o state as the precursor. Subsequently, slow intramolecular triplet-triplet energy transfer (TTET, 0.11-0.60 µs) produced the 3Rho-o state (9.4-13.6 µs). According to the time-resolved electron paramagnetic resonance (TREPR) spectra of NIS-NH2, the zero-field splitting (ZFS) parameter |D| and E of the triplet state were determined to be 6165 MHz and -1233 MHz, respectively, indicating that its triplet state has significant nπ* character, which was supported by its short triplet state lifetime (6.1 µs).

3.
Diabetol Metab Syndr ; 15(1): 141, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386620

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common disease with high morbidity and lacks effective treatment. We investigated the protective effects of the long-term application of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) dapagliflozin on diabetes-associated HFpEF in a rat model. Serum proteomics and metabolomics analysis were also conducted in type 2 diabetic patients with HFpEF treated with dapagliflozin. METHODS: Male Zucker diabetic fatty (ZDF) rats were used as a model of diabetic cardiomyopathy. From weeks 16 to 28, animals were given a vehicle or dapagliflozin (1 mg/kg) once daily. Primary blood biochemistry indices, echocardiography, histopathology, and cardiac hemodynamics were determined during the study period. The key markers of myocardial fibrosis, nitro-oxidative stress, inflammation, apoptosis, autophagy, and AMPK/mTOR signaling were examined. Additionally, healthy controls and individuals with type 2 diabetes were enrolled and 16 serum samples from 4 groups were randomly selected. Serum proteome and metabolome changes after dapagliflozin treatment were analyzed in diabetic individuals with HFpEF. RESULTS: Dapagliflozin effectively prevented the development of HFpEF in rats with diabetes by mitigating nitro-oxidative stress, pro-inflammatory cytokines, myocardial hypertrophy, and fibrosis, reducing apoptosis, and restoring autophagy through AMPK activating and mTOR pathway repressing. Proteomics and metabolomics revealed that cholesterol and high-density lipoprotein particle metabolism, nicotinate and nicotinamide metabolism, arginine biosynthesis, and cAMP and peroxisome proliferator-activated receptor (PPAR) signaling are the major disturbed pathways in HFpEF patients treated with dapagliflozin. CONCLUSION: Long-term treatment with dapagliflozin significantly prevented the development of HFpEF in diabetic rats. Dapagliflozin could be a promising therapeutic strategy in managing HFpEF individuals with type 2 diabetes.

5.
Front Hum Neurosci ; 15: 770678, 2021.
Article in English | MEDLINE | ID: mdl-35069151

ABSTRACT

Objective: The aim of the current study was to investigate the alterations in the neural networks of patients with temporal lobe epilepsy (TLE) during working memory (WM) encoding. Methods: Patients with TLE (n = 52) and healthy volunteers (n = 35) completed a WM task, during which 34-channel electroencephalogram signals were recorded. The neural networks during WM encoding were calculated in TLE patients with (TLE-WM) and without (TLE-N) WM deficits. Results: Functional connectivity strength decreased, and the theta network was altered in the TLE-WM group, although no significant differences in clinical features were observed between the TLE-N and TLE-WM groups. Conclusions: Not all patients with TLE present with cognitive impairments and alterations in the theta network were identified in TLE patients with functional cognitive deficits. Significance: The theta network may represent a sensitive measure of cognitive impairment and could predict cognitive outcomes among patients with TLE.

6.
Chemosphere ; 261: 127929, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33113658

ABSTRACT

To elucidate the effects of extracellular polymeric substance (EPS) on the sludge dewaterability, this study comparatively investigated the changes in EPS composition and spatial distribution, together with the sludge dewaterability after lysozyme (LZM) conditioning. The protein concentration in the tightly bound EPS (TB-EPS) increased from 3.47 mg g-1 DS to 4.99 mg g-1 DS within the first 2 min, then gradually decreased, which could be described by a piecewise linear function. Unlike TB-EPS, the protein content variation trend in both soluble EPS (S-EPS) and loosely bound EPS (LB-EPS) followed the typical first-order kinetics. Additionally, the extended DLVO theory was employed in combination with viscoelastic acoustic response analysis to further explore the impact of EPS composition on water adhesion and microbial cell. After the extraction of S-EPS from the conditioned sludge, the adsorption free energy (ΔGadh) of EPS ascended to -61.05 mJ m-2, indicating the weakened microbial hydrophobicity. By contrast, the ΔGadh value declined after the subsequent extraction of LB-EPS and TB-EPS. Meanwhile, the adsorption potential energy between S-EPS and microbial cells showed an increasing trend, whereas the repulsion potential energy between TB-EPS and microbial cells fell to 1.40 × 104 kT, signifying a weakened adsorption capacity to water. Accordingly, the viscosity and shear modulus of each EPS layer were reduced after conditioning, which contributed to the transformation of bound water into free water. These changes reasonably explained the results that the water content in the dewatered sludge after conditioning was reduced to 58.54%, and the bound water content decreased by 15.06%.


Subject(s)
Extracellular Polymeric Substance Matrix/chemistry , Muramidase/chemistry , Proteins/analysis , Sewage/chemistry , Waste Disposal, Fluid/methods , Water/analysis , Acoustics , Adsorption , Kinetics , Sewage/analysis , Viscosity
7.
Medicine (Baltimore) ; 99(3): e18841, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32011499

ABSTRACT

BACKGROUND: It has been reported the rs10757274 SNP (present on locus 9p21 in the gene for CDKN2BAS1) might be associated with susceptibility to coronary artery disease (CAD). Owing to mixed and inconclusive results, we conducted a meta-analysis to investigate the association between rs10757274 polymorphism and the risk of CAD. OBJECTIVES: The present study aimed to investigate the relationship between rs10757274 polymorphism and the risk of CAD. METHODS: All studies of the rs10757274 SNP with CAD that were published between 2007 and 2018 were retrieved from the PubMed database. Meta-analysis was performed with Stata 14.0 software. The effect size of the rs10757274 SNP with CAD risk was assessed based on the odds ratios (ORs) with calculation of 95% confidence interval (CI). RESULTS: Eleven studies including 52,209 subjects (cases: 7990, controls: 44,219) were included in the final data combination. Pooled overall analyses showed that rs10757274 (allele model: P < .001; dominant model: P < .001; recessive model: P < .001; Heterozygote codominant: P = .002; Homozygote codominant: P < .001) polymorphisms were significantly associated with the likelihood of CAD. Significant heterogeneity between individual studies appears in all 5 models. Further subgroup analyses revealed that rs10757274 polymorphisms were all significantly correlated with the likelihood of CAD and no heterogeneity were observed in West Asians. CONCLUSIONS: Our findings indicated that rs10757274 polymorphisms may serve as genetic biomarkers of CAD, especially in West Asians.


Subject(s)
Coronary Artery Disease/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics , Asian People/genetics , Humans
8.
Chemosphere ; 235: 679-689, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31279118

ABSTRACT

Extracellular polymeric substance (EPS) and the water within it account for about 80% of the total sludge mass, significantly correlated with sludge charge properties, particle size, and dewaterability, while their relation is still ambiguous. To clarify the effect of EPS characteristics on the activated sludge dewaterability, the sludge conditioned by cationic polyacrylamide (CPAM) and lysozyme alone or in combination was comparatively investigated by the means of the SPSS17 software incorporation with chemical analysis. According to the results, the combined conditioning increased both dewatering extent and dewatering rate with the water content as low as 57.79%. It was mainly attributed to the destruction of microbial cell wall and EPS structure by enzymatic conditioning, beneficial for the release of protein (PN) and polysaccharide (PS), as well as the conversion of intracellular water and some bound water into free water. Additionally, Pearson's correlation and factor analysis confirmed the significant influence of EPS properties on sludge dewaterability and explored their detailed relationship. It was indicated the most crucial factors consisted of PNS (PN in S-EPS), PNL (PN in LB-EPS), PNT (PN in TB-EPS), and PST (PS in TB-EPS) accounted for 72.83% in all of the total variance for the contribution to the dewatered water content. Moreover, the high concentration of PNS and PNL led to the zeta potential rising to -9.74 mV, and the destruction of EPS structure was favorable for sludge to form smaller particle size and compact floc structure. All the results were confirmed by the microstructure changes of the sludge flocs.


Subject(s)
Acrylic Resins/chemistry , Extracellular Polymeric Substance Matrix , Waste Disposal, Fluid/methods , Cations , Flocculation , Muramidase , Particle Size , Polysaccharides/analysis , Proteins/analysis , Sewage/chemistry , Water/chemistry
9.
RSC Adv ; 9(12): 6936-6945, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-35518506

ABSTRACT

In this study, the effects of chitosan hydrochloride (CTSCL), lysozyme (LZM) and cationic polyacrylamide (CPAM) as conditioners on the dewatering performance of activated sludge were comparatively investigated in terms of the capillary suction time (CST), specific resistance to filtration (SRF) and water content after conditioning and subsequent dewatering. CTSCL showed nearly the same capacity to improve the sludge dewaterability as CPAM, with CTSCL and CPAM conditioning resulting in the SRF of sludge decreasing by 95.82% and 96.15%, CST decreasing by 78.22% and 84.88%, and water content of the dewatered sludge decreasing by 10.84% and 8.5%, respectively. However, LZM conditioning exhibited the best improvement in the dewatering extent, which could decrease the water content of dewatered sludge by 19.84%. In addition, the evolution of the physical properties, extracellular polymeric substance content and composition, and the sludge floc morphology were analyzed to explain the sludge conditioning mechanism. Both CTSCL and CPAM could extrude sludge surface bound water into free water, produce sludge flocs with a larger size and more surface pores and finally improve the sludge filterability. In comparison with chemical flocculants, the conditioning mechanism of LZM was distinctly different, which effectively decomposed cell walls, released the internal bound water beneficial for improving the sludge dewatering extent, while the released organic substances clogged the floc surface, and the high proportion of fine particles in the flocs resulted in poorer filtration.

10.
Sci Total Environ ; 572: 813-824, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27519320

ABSTRACT

In this study, we characterized dimethylaminium (DMA+) and trimethylaminium (TMA+) in size-segregated atmospheric particles during three cruise campaigns in the marginal seas of China and one cruise campaign mainly in the northwest Pacific Ocean (NWPO). An 14-stage nano-MOUDI sampler was utilized for sampling atmospheric particles ranging from 18µm to 0.010µm. Among the four cruise campaigns, the highest concentrations of DMA+ and TMA+ in PM10 were observed over the South Yellow Sea (SYS) in August 2015, i.e., 0.76±0.12nmolm-3 for DMA+ (average value±standard deviation) and 0.93±0.13nmolm-3 for TMA+. The lowest values were observed over the NWPO in April 2015, i.e., 0.28±0.16nmolm-3 for DMA+ and 0.22±0.12nmolm-3 for TMA+. In general, size distributions of the two ions exhibited a bi-modal pattern, i.e., one mode at 0.01-0.1µm and the other at 0.1-1.8µm. The two ions' mode at 0.01-0.1µm was firstly observed. The mode was largely enhanced in samples collected over the SYS in August 2015, leading to high mole ratios of (DMA++TMA+)/NH4+ in PM0.1 (0.4±0.8, median value±standard deviation) and the ions' concentrations in PM0.1 accounting for ~10% and ~40% of their corresponding concentrations in PM10. This implied that (DMA++TMA+) likely played an important role in neutralizing acidic species in the smaller particles. Using SO42-, NO3- and NH4+ as references, we confirm that the elevated concentrations of DMA+ and TMA+ in the 0.01-0.1µm size range were probably real signals rather than sampling artifacts.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis , China , Dimethylamines/chemistry , Methylamines/chemistry , Pacific Ocean
11.
Virus Genes ; 38(3): 478-86, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19294499

ABSTRACT

The non-structural protein NS1 of Periplaneta fuliginosa densovirus (PfDNV) is a multifunctional protein that has previously been shown to possess ATP-binding, ATPase, site-specific DNA-binding, helicase, and transcription activation activities. We report here an investigation of the cytopathogenicity of this viral non-structural (NS) protein, as well as other two NSs, NS2, and NS3, in cultured insect cells. The expression of NS1 alone potently inhibited cellular gene expression, whereas NS2 and NS3 did not produce a similar effect. The inhibition of gene expression by NS1 was confirmed to be specific and not a simple manifestation of toxicity. For example, NS1 inhibited expression of several reporter genes under the control of different RNA polymerase II promoters, whereas it did not inhibit expression from a T7 RNA polymerase promoter construct. Mapping analysis identified the carboxy-terminal peptide of this protein as the region important for the inhibition of cellular gene expression, suggesting that this inhibition is independent of its DNA-binding activity. Next, the mutagenesis assay showed that ATP-binding was essential for the unique function of this protein. Furthermore, we found that NS2 and NS3 cooperatively enhanced the NS1-induced transcription inhibition. Co-expression of all the three NS proteins in Sf9 cells also led to necrotic cell death by ATP depletion.


Subject(s)
Cell Death , Densovirus/pathogenicity , Periplaneta/virology , Viral Nonstructural Proteins/physiology , Virulence Factors/physiology , Adenosine Triphosphate/metabolism , Animals , Cell Culture Techniques , Cell Survival , Densovirus/genetics , Densovirus/isolation & purification , Host-Pathogen Interactions , Spodoptera , Viral Nonstructural Proteins/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...