Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(19): 193602, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38000409

ABSTRACT

We propose a method to measure time-reversal symmetry violation in molecules that overcomes the standard quantum limit while leveraging decoherence-free subspaces to mitigate sensitivity to classical noise. The protocol does not require an external electric field, and the entangled states have no first-order sensitivity to static electromagnetic fields as they involve superpositions with zero average lab-frame projection of spins and dipoles. This protocol can be applied with trapped neutral or ionic species, and can be implemented using methods that have been demonstrated experimentally.

2.
Phys Chem Chem Phys ; 25(47): 32613-32621, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38009218

ABSTRACT

A relativistic coupled-cluster study of the low-lying electronic states in the radium monohydroxide molecule (RaOH), a radioactive polyatomic molecule of interest to laser cooling and to the search of new physics beyond the Standard Model, is reported. The level positions of the A2Π1/2 and C2Σ states have been computed with an accuracy of around 200 cm-1 to facilitate spectroscopic observation of RaOH using laser induced fluorescence spectroscopy, thereby exploiting the systematic convergence of electron-correlation and basis-set effects in relativistic coupled-cluster calculations. The energy level for the B2Δ3/2 state has also been calculated accurately to conclude that the B2Δ3/2 state lies above the A2Π1/2 state. This confirms X2Σ â†” A2Π1/2 as a promising optical cycling transition for laser cooling RaOH.

3.
Phys Chem Chem Phys ; 25(1): 154-170, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36477096

ABSTRACT

Optical control of polyatomic molecules promises new opportunities in precision metrology and fundamental chemistry, as well as quantum information and many-body science. Contemporary experimental and theoretical efforts have mostly focused on cycling photons via excitation of a single electron localized to an alkaline earth (group 2)-like metal center. In this paper, we consider pathways towards optical cycling in polyatomic molecules with multi-electron degrees of freedom, which arise from two or more cycling electrons localized to p-block post-transition metal and metalloid (group 13, 14, and 15) centers. We characterize the electronic structure and rovibrational branching of several prototypical candidates using ab initio quantum chemical methods. Despite increased internal complexity and challenging design parameters, we find several molecules possessing quasi-closed photon cycling schemes with highly diagonal, visible and near-infrared transitions. Furthermore, we identify new heuristics for engineering optically controllable and laser-coolable polyatomic molecules with multi-electron cycling centers. Our results help elucidate the interplay between hybridization, repulsion, and ionicity in optically active species and provide new directions for using polyatomic molecules with complex electronic structure as a resource for quantum science and measurement.

4.
Phys Rev Lett ; 126(2): 023003, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33512225

ABSTRACT

Precision measurements of Schiff moments in heavy, deformed nuclei are sensitive probes of beyond standard model T, P violation in the hadronic sector. While the most stringent limits on Schiff moments to date are set with diamagnetic atoms, polar polyatomic molecules can offer higher sensitivities with unique experimental advantages. In particular, symmetric top molecular ions possess K doublets of opposite parity with especially small splittings, leading to full polarization at low fields, internal comagnetometer states useful for rejection of systematic effects, and the ability to perform sensitive searches for T, P violation using a small number of trapped ions containing heavy exotic nuclei. We consider the symmetric top cation ^{225}RaOCH_{3}^{+} as a prototypical and candidate platform for performing sensitive nuclear Schiff measurements and characterize in detail its internal structure using relativistic ab initio methods. The combination of enhancements from a deformed nucleus, large polarizability, and unique molecular structure make this molecule a promising platform to search for fundamental symmetry violation even with a single trapped ion.

5.
Phys Rev Lett ; 120(6): 063205, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29481281

ABSTRACT

We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X[over ˜]^{2}Σ^{+}↔A[over ˜]^{2}Π_{1/2} electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...