Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 25(6): 956-960, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36729497

ABSTRACT

The iboga alkaloids are promising antiaddictive and neuroregeneration candidates for medical treatment. There is a lack of studies for C20-epi iboga alkaloids due to the synthetic difficulties. Herein we report the shortest total synthesis of (+)-epiibogamine in seven steps from trimethyl orthobutyrate. The novel N-sulfinyl silylenamine reagent enabled the key step, with three-component domino Michael/Michael/Mannich annulation providing the 1-amino-2,4-diester scaffold with four new chiral centers, and access to the isoquinuclidine in high yield (84%) and diastereoselectivity (>95:5 dr).

2.
Org Lett ; 24(36): 6548-6553, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36044766

ABSTRACT

The diastereoselective α-hydroxylation of N-tert-butanesulfinyl metallodienenamine and metalloenamines with Davis oxaziridine affords α-hydroxy N-sulfinyl imines with 50-88% yield and up to 98:2 diastereomeric ratio. Dramatic changes in diastereoselectivity and stereoselectivity were observed by choice of metal bases. The mechanistic understanding for the switch in diastereoselectivity was assisted by DFT computational modeling, which suggests the facial approach is governed by aza-enolate geometry. A one-pot protocol for the asymmetric synthesis of 1,2-amino alcohols is described.


Subject(s)
Amino Alcohols , Imines , Hydroxylation , Molecular Structure , Stereoisomerism , Sulfonium Compounds
3.
Org Lett ; 23(18): 7014-7017, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34473521

ABSTRACT

The domino Michael/Mannich (DMM) annulation reaction between an N-sulfinyl lithiodienamine and an electrophilic alkene is developed for the synthesis of chiral 2-amino cyclohexenes, a key building block in asymmetric synthesis. The DMM reaction proceeds at low temperature while maintaining the stereochemical fidelity. The product functionalized amino cyclohexenes, here obtained in 55-82% yield with diastereomeric ratios as high as >19:1.

4.
Int J Mol Sci ; 21(14)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32659946

ABSTRACT

In recent years, plant genetic engineering has advanced agriculture in terms of crop improvement, stress and disease resistance, and pharmaceutical biosynthesis. Cells from land plants and algae contain three organelles that harbor DNA: the nucleus, plastid, and mitochondria. Although the most common approach for many plant species is the introduction of foreign DNA into the nucleus (nuclear transformation) via Agrobacterium- or biolistics-mediated delivery of transgenes, plastid transformation offers an alternative means for plant transformation. Since there are many copies of the chloroplast genome in each cell, higher levels of protein accumulation can often be achieved from transgenes inserted in the chloroplast genome compared to the nuclear genome. Chloroplasts are therefore becoming attractive hosts for the introduction of new agronomic traits, as well as for the biosynthesis of high-value pharmaceuticals, biomaterials and industrial enzymes. This review provides a comprehensive historical and biological perspective on plastid transformation, with a focus on current and emerging approaches such as the use of single-walled carbon nanotubes (SWNTs) as DNA delivery vehicles, overexpressing morphogenic regulators to enhance regeneration ability, applying genome editing techniques to accelerate double-stranded break formation, and reconsidering protoplasts as a viable material for plastid genome engineering, even in transformation-recalcitrant species.


Subject(s)
Crops, Agricultural/genetics , Plastids/genetics , Transformation, Genetic/genetics , Animals , Chloroplasts/genetics , Gene Editing/methods , Genetic Engineering/methods , Genome, Chloroplast/genetics , Humans , Nanotubes, Carbon/chemistry , Plants, Genetically Modified/genetics , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...