Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 264(Pt 1): 130417, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417744

ABSTRACT

Cellulose-rich straws of corn and rice were torrefied under carbon dioxide, and the fuel characteristics and combustion performance of the obtained biochar were investigated. A high severity resulted in surface collapse, greater pore volume, elimination of oxygen, elevated calorific value, and improved hydrophobicity in biochar. Following carbon dioxide torrefaction, the cellulose content in solid biochar experienced a slight decrease when the temperature was raised to 220 °C for longer residence durations. At 300 °C, the cellulose content in the biochar was nearly eliminated, while the relative proportion of non-sugar organic matter in corn stover and rice straw increased to 87.40 % and 77.27 %, respectively. The maximum calorific values for biochar from corn and rice straws were 22.38 ± 0.03 MJ/kg and 18.72 ± 0.05 MJ/kg. The comprehensive combustion indexes of rice and corn straw samples decreased to 1.06 × 10-7 and 1.31 × 10-7 after torrefaction at 300 °C, respectively. In addition, the initial decomposition temperatures increased by 38 °C and 45 °C, while the ultimate combustion temperatures rose by 13 °C and 16 °C for corn and rice straws, respectively. These results imply an extended combustion timeframe for the torrefied samples.


Subject(s)
Carbon Dioxide , Cellulose , Charcoal , Biomass , Temperature
2.
Int J Biol Macromol ; 253(Pt 4): 127012, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37734524

ABSTRACT

Lignin nanoparticles (LNPs) were synthesized using an anti-solvent method and subsequently loaded with manganese dioxide (MnO2) via potassium permanganate treatment, resulting in the formation of MnO2@LNPs. An extensive investigation was conducted to elucidate the influence of MnO2@LNPs on the decolorization of methyl orange solution. The LNPs were successfully obtained by adjusting the preparation parameters, yielding particles exhibited average sizes ranging from 300 to 600 nm, and the synthesis process exhibited a high yield of up to 87.3% and excellent dispersion characteristics. Notably, LNPs size was reduced by decreasing initial concentration, increasing stirring rate, and adding water. In the acetone-water two-phase system, LNPs self-assembled into spherical particles driven by π-π interactions and hydrogen bond forces. Oxidation modification using potassium permanganate led to the formation of nanoscale MnO2, which effectively combined with LNPs. Remarkably, the resulting MnO2@LNPs demonstrated a two-fold increase in methyl orange adsorption capacity (227 mg/g) compared to unmodified LNPs. The process followed the Langmuir isotherm model and was exothermic.


Subject(s)
Nanoparticles , Oxides , Oxides/chemistry , Manganese Compounds/chemistry , Potassium Permanganate , Lignin/chemistry , Adsorption , Water , Nanoparticles/chemistry
3.
Bioresour Technol ; 384: 129365, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37343804

ABSTRACT

A green and effective method is proposed for the pretreatment of eucalyptus by freeze-thaw assisted maleic acid tactic, wherein the effects of freeze-thaw, maleic acid concentration, reaction time, and temperature on the fractionation were examined. Results showed that under optimal conditions (60% maleic acid, 120 °C, and 2 h), a remarkable removal of 74.5% lignin and 95.2% hemicellulose was achieved after freeze-thaw treatment. The resulting cellulose-rich solid residues were further processed with maleic acid to prepare cellulose nanocrystals, which displayed uniform sized rod-like structures and high crystallinity (62.51%). Moreover, maleic acid pretreatment resulted in lignin with low molecular weight (2110-2530) and excellent homogeneity (PDI ≤ 1.86), while maintaining a relatively intact structure. The lignin had high ß-O-4 aryl ether bond contents (≥77.5%) and abundant phenolic hydroxyl contents (2.33-3.63 mmol/g). Overall, the process exhibits notable benefits in effectively separating lignocellulose for high valorization.


Subject(s)
Eucalyptus , Nanoparticles , Cellulose , Lignin/chemistry , Eucalyptus/chemistry , Hydrolysis
4.
Helicobacter ; 16(5): 389-97, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21923685

ABSTRACT

BACKGROUND: Long-term Helicobacter pylori infection leads to chronic gastritis, peptic ulcer, and gastric malignancies. Indigenous microflora in alimentary tract maintains a colonization barrier against pathogenic microorganisms. This study is aimed to observe the gastric and duodenum microflora alteration after H. pylori infection in Mongolian Gerbils model. MATERIALS AND METHODS: A total of 18 Mongolian gerbils were randomly divided into two groups: control group and H. pylori group that were given H. pylori NCTC J99 strain intragastrically. After 12 weeks, H. pylori colonization was identified by rapid urease tests and bacterial culture. Indigenous microorganisms in stomach and duodenum were analyzed by culture method. Histopathologic examination of gastric and duodenum mucosa was also performed. RESULTS: Three of eight gerbils had positive H. pylori colonization. After H. pylori infection, Enterococcus spp. and Staphylococcus aureus showed occurrences in stomach and duodenum. Lactobacillus spp. showed a down trend in stomach. The levels and localizations of Bifidobacterium spp., Bacteroides spp., and total aerobes were also modified. Bacteroides spp. significantly increased in H. pylori positive gerbils. No Enterobacteriaceae were detected. Positive colonization gerbils showed a higher histopathologic score of gastritis and a similar score of duodenitis. CONCLUSIONS: Long-term H. pylori colonization affected the distribution and numbers of indigenous microflora in stomach and duodenum. Successful colonization caused a more severe gastritis. Gastric microenvironment may be unfit for lactobacilli fertility after long-term H. pylori infection, while enterococci, S. aureus, bifidobacteria, and bacteroides showed their adaptations.


Subject(s)
Duodenum/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori , Stomach/microbiology , Animals , Duodenum/pathology , Gerbillinae , Stomach/pathology , Time Factors
5.
World J Gastroenterol ; 16(27): 3394-401, 2010 Jul 21.
Article in English | MEDLINE | ID: mdl-20632441

ABSTRACT

AIM: To compare the effects of four Bifidobacteria strains (Bifidobacteria L66-5, L75-4, M13-4 and FS31-12, originated from normal human intestines) on weight gain, lipid metabolism, glucose metabolism in an obese murine model induced by high-fat diet. METHODS: Forty-eight Sprague-Dawley rats were randomly divided into six groups. Control group received standard chow, model group received high-fat diet, and intervention groups received high-fat diet added with different Bifidobacteria strains isolated from healthy volunteers' fresh feces. All rats were executed at the 6th weekend. Body weight (BW), obese indexes, oral glucose tolerance test, serum and liver lipid and serum insulin (INS) were tested. Liver lipid deposition was classified pathologically. RESULTS: Compared with the model group, B. M13-4 improved BW gains (264.27 +/- 26.91 vs 212.55 +/- 18.54, P = 0.001) while B. L66-5 induced a decrease in BW (188.47 +/- 11.96 vs 212.55 +/- 18.54, P = 0.043). The rest two strains had no significant change in BW. All the four strains can reduce serum and liver triglyceride and significantly alleviate the lipid deposition in liver. All strains showed a trend of lowing serum and liver total cholesterol while B. L66-5 and B. FS31-12 did so more significantly. In addition, all the four strains showed no significant differences in serum INS and glucose level. CONCLUSION: The response of energy metabolism to administration of Bifidobacteria is strain dependent. Different strains of Bifidobacteria might drive different directions of fat distribution.


Subject(s)
Bifidobacterium/metabolism , Diet , Dietary Fats , Obesity/microbiology , Animals , Blood Glucose/metabolism , Cholesterol/blood , Disease Models, Animal , Glucose Tolerance Test , Humans , Lipid Metabolism , Lipids/blood , Liver/chemistry , Liver/cytology , Liver/metabolism , Liver/pathology , Male , Obesity/metabolism , Obesity/physiopathology , Random Allocation , Rats , Rats, Sprague-Dawley , Triglycerides/blood , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...