Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39065984

ABSTRACT

There are various indoor fingerprint localization techniques utilizing the similarity of received signal strength (RSS) to discriminate the similarity of positions. However, due to the varied states of different wireless access points (APs), each AP's contribution to RSS similarity varies, which affects the accuracy of localization. In our study, we analyzed several critical causes that affect APs' contribution, including APs' health states and APs' positions. Inspired by these insights, for a large-scale indoor space with ubiquitous APs, a threshold was set for all sample RSS to eliminate the abnormal APs dynamically, a correction quantity for each RSS was provided by the distance between the AP and the sample position to emphasize closer APs, and a priority weight was designed by RSS differences (RSSD) to further optimize the capability of fingerprint distances (FDs, the Euclidean distance of RSS) to discriminate physical distance (PDs, the Euclidean distance of positions). Integrating the above policies for the classical WKNN algorithm, a new indoor fingerprint localization technique is redefined, referred to as FDs' discrimination capability improvement WKNN (FDDC-WKNN). Our simulation results showed that the correlation and consistency between FDs and PDs are well improved, with the strong correlation increasing from 0 to 76% and the high consistency increasing from 26% to 99%, which confirms that the proposed policies can greatly enhance the discrimination capabilities of RSS similarity. We also found that abnormal APs can cause significant impact on FDs discrimination capability. Further, by implementing the FDDC-WKNN algorithm in experiments, we obtained the optimal K value in both the simulation scene and real library scene, under which the mean errors have been reduced from 2.2732 m to 1.2290 m and from 4.0489 m to 2.4320 m, respectively. In addition, compared to not using the FDDC-WKNN, the cumulative distribution function (CDF) of the localization errors curve converged faster and the error fluctuation was smaller, which demonstrates the FDDC-WKNN having stronger robustness and more stable localization performance.

2.
Front Plant Sci ; 15: 1269423, 2024.
Article in English | MEDLINE | ID: mdl-38463562

ABSTRACT

Introduction: Grapes are prone to various diseases throughout their growth cycle, and the failure to promptly control these diseases can result in reduced production and even complete crop failure. Therefore, effective disease control is essential for maximizing grape yield. Accurate disease identification plays a crucial role in this process. In this paper, we proposed a real-time and lightweight detection model called Fusion Transformer YOLO for 4 grape diseases detection. The primary source of the dataset comprises RGB images acquired from plantations situated in North China. Methods: Firstly, we introduce a lightweight high-performance VoVNet, which utilizes ghost convolutions and learnable downsampling layer. This backbone is further improved by integrating effective squeeze and excitation blocks and residual connections to the OSA module. These enhancements contribute to improved detection accuracy while maintaining a lightweight network. Secondly, an improved dual-flow PAN+FPN structure with Real-time Transformer is adopted in the neck component, by incorporating 2D position embedding and a single-scale Transformer Encoder into the last feature map. This modification enables real-time performance and improved accuracy in detecting small targets. Finally, we adopt the Decoupled Head based on the improved Task Aligned Predictor in the head component, which balances accuracy and speed. Results: Experimental results demonstrate that FTR-YOLO achieves the high performance across various evaluation metrics, with a mean Average Precision (mAP) of 90.67%, a Frames Per Second (FPS) of 44, and a parameter size of 24.5M. Conclusion: The FTR-YOLO presented in this paper provides a real-time and lightweight solution for the detection of grape diseases. This model effectively assists farmers in detecting grape diseases.

SELECTION OF CITATIONS
SEARCH DETAIL