Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 232, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167547

ABSTRACT

In this study, the core carcinogenic elements in Xuanwei Formation coal were identified. Thirty-one samples were collected based on the age-standardized mortality rate (ASMR) of lung cancer; Si, V, Cr, Co, Ni, As, Mo, Cd, Sb, Pb, and rare earth elements and yttrium (REYs) were analyzed and compared; multivariate statistical analyses (CA, PCA, and FDA) were performed; and comprehensive identification was carried out by combining multivariate statistical analyses with toxicology and mineralogy. The final results indicated that (1) the high-concentration Si, Ni, V, Cr, Co, and Cd in coal may have some potential carcinogenic risk. (2) The concentrations of Cr, Ni, As, Mo, Cd, and Pb meet the zoning characteristics of the ASMR, while the Si concentration is not completely consistent. (3) The REY distribution pattern in Longtan Formation coal is lower than that in Xuanwei Formation coal, indicating that the materials of these elements in coal are different. (5) The heatmap divides the sampling sites into two clusters and subtypes in accordance with carcinogenic zoning based on the ASMR. (6) PC1, PC2, and PC3 explain 62.629% of the total variance, identifying Co, Ni, As, Cd, Mo, Cr, and V. (7) Fisher discriminant analysis identifies Ni, Si, Cd, As, and Co based on the discriminant function. (8) Comprehensive identification reveals that Ni is the primary carcinogenic element, followed by Co, Cd, and Si in combination with toxicology. (9) The paragenesis of Si (nanoquartz), Ni, Co, and Cd is an interesting finding. In other words, carcinogenic elements Ni, Co, Cd, and Si and their paragenetic properties should receive more attention.


Subject(s)
Lung Neoplasms , Metals, Heavy , Humans , Carcinogens/toxicity , Carcinogens/analysis , Coal/analysis , Cadmium/analysis , Lead/analysis , Environmental Monitoring/methods , China/epidemiology , Metals, Heavy/analysis , Risk Assessment
2.
Environ Sci Pollut Res Int ; 28(2): 1850-1865, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32856247

ABSTRACT

We attempt to understand the pollution characteristics and carcinogenic risk of toxic elements around Hutou Village, Xuanwei City, Yunnan Province, China. For this propose, 48 road dust samples were collected systematically, and the concentrations of Cr, Ni, Cu, Zn, As, Cd, Pb, Co, and Cr(IV) were analyzed and compared; the spatial distribution was obtained. The Igeo and EF indices and multivariate statistical analysis (CA, PCA, HACA) were carried out for source investigation, and human health risk assessment was also adopted to evaluate local non-carcinogenic and carcinogenic risks. The result showed that Cr, Ni, Cu, Cd and Co contaminations were quite serious; Zn, As, Cd, and Pb had similar distribution pattern, and Cr and Ni also shared similar distribution characteristics; Cd, Pb, Zn, and As ascribed to anthropogenic sources, while Cr and Ni originated from either anthropogenic activity or natural sources; Co and Cu originated from natural sources; the non-carcinogenic risk of Co cannot be ignored. The carcinogenic risk of Ni was considered unacceptable. Finally, an indoor coal-burning pattern was established that the high Cd and Ni inhalation and ingestion model was associated with lung cancer.


Subject(s)
Lung Neoplasms , Metals, Heavy , China/epidemiology , Cities , Dust/analysis , Environmental Monitoring , Humans , Incidence , Lung Neoplasms/epidemiology , Metals, Heavy/analysis , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...