Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Main subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(17): e2401514121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38640346

ABSTRACT

Near-field radiative heat transfer has recently attracted increasing interests for its applications in energy technologies, such as thermophotovoltaics. Existing works, however, are restricted to time-independent systems. Here, we explore near-field radiative heat transfer between two bodies under time modulation by developing a rigorous fluctuational electrodynamics formalism. We demonstrate that time modulation can result in the enhancement, suppression, elimination, or reversal of radiative heat flow between the two bodies, and can be used to create a radiative thermal diode with an infinite contrast ratio, as well as a near-field radiative heat engine that pumps heat from the cold to the hot bodies. The formalism reveals a fundamental symmetry relation in the radiative heat transfer coefficients that underlies these effects. Our results indicate the significant capabilities of time modulation for managing nanoscale radiative heat flow.

2.
Phys Rev Lett ; 130(9): 096902, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36930900

ABSTRACT

We show that the spatial coherence of thermal radiation can be manipulated in time-modulated photonic systems supporting surface polaritons. We develop a fluctuational electrodynamics formalism for such systems to calculate the cross-spectral density tensor of the emitted thermal electromagnetic fields in the near-field regime. Our calculations indicate that, due to time-modulation, spatial coherence can be transferred between different frequencies, and correlations between different frequency components become possible. All these effects are unique to time-modulated systems. We also show that the decay rate of optical emitters can be controlled in the proximity of such time-modulated structure. Our findings open a promising avenue toward coherence control in thermal radiation, dynamical thermal imaging, manipulating energy transfer among thermal or optical emitters, efficient near-field radiative cooling, and engineering spontaneous emission rates of molecules.

3.
Science ; 379(6632): 558-561, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36758071

ABSTRACT

Negative refraction provides a platform to manipulate mid-infrared and terahertz radiation for molecular sensing and thermal emission applications. However, its implementation based on metamaterials and plasmonic media presents challenges with optical losses, limited spatial confinement, and lack of active tunability in this spectral range. We demonstrate gate-tunable negative refraction at mid-infrared frequencies using hybrid topological polaritons in van der Waals heterostructures. Specifically, we visualize wide-angle negatively refracted polaritons in α-MoO3 films partially decorated with graphene, undergoing reversible planar nanoscale focusing. Our atomically thick heterostructures weaken scattering losses at the interface while enabling an actively tunable transition of normal to negative refraction through electrical gating. We propose polaritonic negative refraction as a promising platform for infrared applications such as electrically tunable super-resolution imaging, nanoscale thermal manipulation, enhanced molecular sensing, and on-chip optical circuitry.

4.
Sci Adv ; 9(1): eadd2349, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36598994

ABSTRACT

Strong coupling in light-matter systems is a central concept in cavity quantum electrodynamics and is essential for many quantum technologies. Especially in the optical range, full control of highly connected multi-qubit systems necessitates quantum coherent probes with nanometric spatial resolution, which are currently inaccessible. Here, we propose the use of free electrons as high-resolution quantum sensors for strongly coupled light-matter systems. Shaping the free-electron wave packet enables the measurement of the quantum state of the entire hybrid systems. We specifically show how quantum interference of the free-electron wave packet gives rise to a quantum-enhanced sensing protocol for the position and dipole orientation of a subnanometer emitter inside a cavity. Our results showcase the great versatility and applicability of quantum interactions between free electrons and strongly coupled cavities, relying on the unique properties of free electrons as strongly interacting flying qubits with miniscule dimensions.

5.
Nat Nanotechnol ; 17(9): 940-946, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35982316

ABSTRACT

Control over charge carrier density provides an efficient way to trigger phase transitions and modulate the optoelectronic properties of materials. This approach can also be used to induce topological transitions in the optical response of photonic systems. Here we report a topological transition in the isofrequency dispersion contours of hybrid polaritons supported by a two-dimensional heterostructure consisting of graphene and α-phase molybdenum trioxide. By chemically changing the doping level of graphene, we observed that the topology of polariton isofrequency surfaces transforms from open to closed shapes as a result of doping-dependent polariton hybridization. Moreover, when the substrate was changed, the dispersion contour became dominated by flat profiles at the topological transition, thus supporting tunable diffractionless polariton propagation and providing local control over the optical contour topology. We achieved subwavelength focusing of polaritons down to 4.8% of the free-space light wavelength by using a 1.5-µm-wide silica substrate as an in-plane lens. Our findings could lead to on-chip applications in nanoimaging, optical sensing and manipulation of energy transfer at the nanoscale.

6.
Adv Mater ; 34(23): e2105590, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35238092

ABSTRACT

Manipulation of the propagation and energy-transport characteristics of subwavelength infrared (IR) light fields is critical for the application of nanophotonic devices in photocatalysis, biosensing, and thermal management. In this context, metamaterials are useful composite materials, although traditional metal-based structures are constrained by their weak mid-IR response, while their associated capabilities for optical propagation and focusing are limited by the size of attainable artificial optical structures and the poor performance of the available active means of control. Herein, a tunable planar focusing device operating in the mid-IR region is reported by exploiting highly oriented in-plane hyperbolic phonon polaritons in α-MoO3 . Specifically, an unprecedented change of effective focal length of polariton waves from 0.7 to 7.4 µm is demonstrated by the following three different means of control: the dimension of the device, the employed light frequency, and engineering of phonon-plasmon hybridization. The high confinement characteristics of phonon polaritons in α-MoO3 permit the focal length and focal spot size to be reduced to 1/15 and 1/33 of the incident wavelength, respectively. In particular, the anisotropic phonon polaritons supported in α-MoO3 are combined with tunable surface-plasmon polaritons in graphene to realize in situ and dynamical control of the focusing performance, thus paving the way for phonon-polariton-based planar nanophotonic applications.

7.
Nat Commun ; 13(1): 1465, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35304465

ABSTRACT

Due to the two-dimensional character of graphene, the plasmons sustained by this material have been invariably studied in supported samples so far. The substrate provides stability for graphene but often causes undesired interactions (such as dielectric losses, phonon hybridization, and impurity scattering) that compromise the quality and limit the intrinsic flexibility of graphene plasmons. Here, we demonstrate the visualization of plasmons in suspended graphene at room temperature, exhibiting high-quality factor Q~33 and long propagation length > 3 µm. We introduce the graphene suspension height as an effective plasmonic tuning knob that enables in situ change of the dielectric environment and substantially modulates the plasmon wavelength, propagation length, and group velocity. Such active control of micrometer plasmon propagation facilitates near-unity-order modulation of nanoscale energy flow that serves as a plasmonic switch with an on-off ratio above 14. The suspended graphene plasmons possess long propagation length, high tunability, and controllable energy transmission simultaneously, opening up broad horizons for application in nano-photonic devices.

8.
Science ; 375(6583): 822-823, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35201880

ABSTRACT

Manipulation and enhancement of scintillation is achieved in nanophotonic structures.


Subject(s)
Light
9.
Phys Rev Lett ; 127(15): 157404, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34678034

ABSTRACT

Probing optical excitations with high resolution is important for understanding their dynamics and controlling their interaction with other photonic elements. This can be done using state-of-the-art electron microscopes, which provide the means to sample optical excitations with combined meV-sub-nm energy-space resolution. For reciprocal photonic systems, electrons traveling in opposite directions produce identical signals, while this symmetry is broken in nonreciprocal structures. Here, we theoretically investigate this phenomenon by analyzing electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) for structures consisting of magnetically biased InAs as an instance of gyrotropic nonreciprocal material. We find that the spectral features associated with excitations of InAs films depend on the electron propagation direction in both EELS and CL, and can be tuned by varying the applied magnetic field within a relatively modest subtesla regime. The magnetic field modifies the optical field distribution of the sampled resonances, and this in turn produces a direction-dependent coupling to the electron. The present results pave the way to the use of electron microscope spectroscopies to explore the near-field characteristics of nonreciprocal systems with high spatial resolution.

10.
Sci Adv ; 6(28): eabb4713, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32923595

ABSTRACT

We explore a disruptive approach to nanoscale sensing by performing electron energy loss spectroscopy through the use of low-energy ballistic electrons that propagate on a two-dimensional semiconductor. In analogy to free-space electron microscopy, we show that the presence of analyte molecules in the vicinity of the semiconductor produces substantial energy losses in the electrons, which can be resolved by energy-selective electron injection and detection through actively controlled potential gates. The infrared excitation spectra of the molecules are thereby gathered in this electronic device, enabling the identification of chemical species with high sensitivity. Our realistic theoretical calculations demonstrate the superiority of this technique for molecular sensing, capable of performing spectral identification at the zeptomol level within a microscopic all-electrical device.

11.
Phys Rev Lett ; 125(3): 037403, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32745382

ABSTRACT

Transient optical heating provides an efficient way to trigger phase transitions in naturally occurring media through ultrashort laser pulse irradiation. A similar approach could be used to induce topological transitions in the photonic response of suitably engineered artificial structures known as metamaterials. Here, we predict a topological transition in the isofrequency dispersion contours of a layered graphene metamaterial under optical pumping. We show that the contour topology transforms from elliptic to hyperbolic within a subpicosecond timescale by exploiting the extraordinary photothermal properties of graphene. This new phenomenon allows us to theoretically demonstrate applications in engineering the decay rate of proximal optical emitters, ultrafast beam steering, and dynamical far-field subwavelength imaging. Our study opens a disruptive approach toward ultrafast control of light emission, beam steering, and optical image processing.

12.
Light Sci Appl ; 9: 87, 2020.
Article in English | MEDLINE | ID: mdl-32435470

ABSTRACT

Nanoscale photothermal effects enable important applications in cancer therapy, imaging and catalysis. These effects also induce substantial changes in the optical response experienced by the probing light, thus suggesting their application in all-optical modulation. Here, we demonstrate the ability of graphene, thin metal films, and graphene/metal hybrid systems to undergo photothermal optical modulation with depths as large as >70% over a wide spectral range extending from the visible to the terahertz frequency domains. We envision the use of ultrafast pump laser pulses to raise the electron temperature of graphene during a picosecond timescale in which its mid-infrared plasmon resonances undergo dramatic shifts and broadenings, while visible and near-infrared plasmons in the neighboring metal films are severely attenuated by the presence of hot graphene electrons. Our study opens a promising avenue toward the active photothermal manipulation of the optical response in atomically thin materials with potential applications in ultrafast light modulation.

13.
Phys Rev Lett ; 125(25): 259901, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33416404

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.121.057404.

14.
Nat Mater ; 17(11): 1048, 2018 11.
Article in English | MEDLINE | ID: mdl-30202113

ABSTRACT

In the version of this Article originally published, the units of the right-hand y axis of Fig. 2a were incorrectly labelled as mS; they should have been µS. Also, the x-axis tick marks of Fig. 3b should have been aligned with Fig. 3a,c. These have now been corrected.

15.
Phys Rev Lett ; 121(5): 057404, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30118298

ABSTRACT

Nanoscale photothermal sources find important applications in theranostics, imaging, and catalysis. In this context, graphene offers a unique suite of optical, electrical, and thermal properties, which we exploit to show self-consistent active photothermal modulation of its nanoscale response. In particular, we predict the existence of plasmons confined to the optical landscape tailored by continuous-wave external-light pumping of homogeneous graphene. This result relies on the high electron temperatures achievable in optically pumped clean graphene while its lattice remains near ambient temperature. Our study opens a new avenue toward the active optical control of the nanophotonic response in graphene with potential application in photothermal devices.

16.
Nat Mater ; 17(11): 986-992, 2018 11.
Article in English | MEDLINE | ID: mdl-30150622

ABSTRACT

Optical excitation and subsequent decay of graphene plasmons can produce a significant increase in charge-carrier temperature. An efficient method to convert this temperature elevation into electrical signals can enable important mid-infrared applications. However, the modest thermoelectric coefficient and weak temperature dependence of carrier transport in graphene hinder this goal. Here, we demonstrate mid-infrared graphene detectors consisting of arrays of plasmonic resonators interconnected by quasi-one-dimensional nanoribbons. Localized barriers associated with disorder in the nanoribbons produce a dramatic temperature dependence of carrier transport, thus enabling the electrical detection of plasmon decay in the nearby graphene resonators. Our device has a subwavelength footprint of 5 × 5 µm2 and operates at 12.2 µm with an external responsivity of 16 mA W-1 and a low noise-equivalent power of 1.3 nW Hz-1/2 at room temperature. It is fabricated using large-scale graphene and possesses a simple two-terminal geometry, representing an essential step towards the realization of an on-chip graphene mid-infrared detector array.

17.
Chem Soc Rev ; 46(22): 6710-6724, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-28930311

ABSTRACT

Control over the optical response of metal nanoparticles and their associated plasmons is currently enabling many promising applications in areas as diverse as biosensing and photocatalysis. In this context, experiments based upon colloid synthesis and nanofabricated structures are assisted by numerical electromagnetic modeling, which supplies predictive simulations, but not the kind of physical intuition needed for exploration of new ideas, such as one finds when simple mathematical expressions can describe a problem. This tutorial review presents and extends a simple analytical simulation method that allows us to accurately describe the optical response of metal nanoparticles, including retardation effects, without the requirement of large computational resources. More precisely, plasmonic extinction spectra and near-field enhancement are described through a small set of real numbers for each nanoparticle shape, which we tabulate for a wide selection of common morphologies. Remarkably, these numbers are independent of size, composition and environment. We further present a compilation of nanoplasmonic experimental data that are excellently described by the simple mathematical expressions here introduced.

18.
ACS Nano ; 11(8): 7915-7924, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28727409

ABSTRACT

Metallodielectric multishell nanoparticles are capable of hosting collective plasmon oscillations distributed among different metallic layers, which result in large near-field enhancement at specific regions of the structure, where light absorption is maximized. We exploit this capability of multishell nanoparticles, combined with thermal boundary resistances and spatial tailoring of the optical near fields, to design plasmonic nano-ovens capable of achieving high temperatures at the core region using moderate illumination intensities. We find a large optical intensity enhancement of ∼104 over a relatively broad core region with a simple design consisting of three metal layers. This provides an unusual thermal environment, which together with the high pressures of ∼105 atm produced by concatenated curved layers holds great potential for exploring physical and chemical processes under extreme optical/thermal/pressure conditions in confined nanoscale spaces, while the outer surface of the nano-oven is close to ambient conditions.

19.
Nat Commun ; 8(1): 2, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28232748

ABSTRACT

Light absorption in conducting materials produces heating of their conduction electrons, followed by relaxation into phonons within picoseconds, and subsequent diffusion into the surrounding media over longer timescales. This conventional picture of optical heating is supplemented by radiative cooling, which typically takes place at an even lower pace, only becoming relevant for structures held in vacuum or under extreme thermal isolation. Here, we reveal an ultrafast radiative cooling regime between neighboring plasmon-supporting graphene nanostructures in which noncontact heat transfer becomes a dominant channel. We predict that more than 50% of the electronic heat energy deposited on a graphene disk can be transferred to a neighboring nanoisland within a femtosecond timescale. This phenomenon is facilitated by the combination of low electronic heat capacity and large plasmonic field concentration in doped graphene. Similar effects should occur in other van der Waals materials, thus opening an unexplored avenue toward efficient heat management.Electron relaxation, which is the dominant release channel of electronic heat in nanostructures, occurs with characteristic times of several picoseconds. Here, the authors predict that an ultrafast (femtosecond) radiative cooling regime takes place in plasmonically active neighboring graphene nanodisks prior to electron relaxation.

20.
Phys Rev Lett ; 117(12): 123904, 2016 Sep 16.
Article in English | MEDLINE | ID: mdl-27689278

ABSTRACT

Plasmons provide excellent sensitivity to detect analyte molecules through their strong interaction with the dielectric environment. Plasmonic sensors based on noble metals are, however, limited by the spectral broadening of these excitations. Here we identify a new mechanism that reveals the presence of individual molecules through the radical changes that they produce in the plasmons of graphene nanoislands. An elementary charge or a weak permanent dipole carried by the molecule are shown to be sufficient to trigger observable modifications in the linear absorption spectra and the nonlinear response of the nanoislands. In particular, a strong second-harmonic signal, forbidden by symmetry in the unexposed graphene nanostructure, emerges due to a redistribution of conduction electrons produced by interaction with the molecule. These results pave the way toward ultrasensitive nonlinear detection of dipolar molecules and molecular radicals that is made possible by the extraordinary optoelectronic properties of graphene.

SELECTION OF CITATIONS
SEARCH DETAIL
...