Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Natl Sci Rev ; 11(7): nwad241, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38883292

ABSTRACT

Superconductivity (SC) was experimentally observed for the first time in antimony polyhydride. The diamond anvil cell combined with a laser heating system was used to synthesize the antimony polyhydride sample at high pressure and high temperature. In-situ high pressure transport measurements as a function of temperature with an applied magnetic field were performed to study the SC properties. It was found that the antimony polyhydride samples show superconducting transition with critical temperature T c 116 K at 184 GPa. The investigation of SC at magnetic field revealed the superconducting coherent length of ∼40 Å based on the Ginzburg Landau (GL) equation. Antimony polyhydride superconductor has the second highest T c in addition to sulfur hydride among the polyhydrides of elements from main groups IIIA to VIIA in the periodic table.

2.
Nat Commun ; 15(1): 1017, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310096

ABSTRACT

Realizing room-temperature magnetic skyrmions in two-dimensional van der Waals ferromagnets offers unparalleled prospects for future spintronic applications. However, due to the intrinsic spin fluctuations that suppress atomic long-range magnetic order and the inherent inversion crystal symmetry that excludes the presence of the Dzyaloshinskii-Moriya interaction, achieving room-temperature skyrmions in 2D magnets remains a formidable challenge. In this study, we target room-temperature 2D magnet Fe3GaTe2 and unveil that the introduction of iron-deficient into this compound enables spatial inversion symmetry breaking, thus inducing a significant Dzyaloshinskii-Moriya interaction that brings about room-temperature Néel-type skyrmions with unprecedentedly small size. To further enhance the practical applications of this finding, we employ a homemade in-situ optical Lorentz transmission electron microscopy to demonstrate ultrafast writing of skyrmions in Fe3-xGaTe2 using a single femtosecond laser pulse. Our results manifest the Fe3-xGaTe2 as a promising building block for realizing skyrmion-based magneto-optical functionalities.

3.
Small ; 20(25): e2308724, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38229571

ABSTRACT

In future information storage and processing, magnonics is one of the most promising candidates to replace traditional microelectronics. Yttrium iron garnet (YIG) films with perpendicular magnetic anisotropy (PMA) have aroused widespread interest in magnonics. Obtaining strong PMA in a thick YIG film with a small lattice mismatch (η) has been fascinating but challenging. Here, a novel strategy is proposed to reduce the required minimum strain value for producing PMA and increase the maximum thickness for maintaining PMA in YIG films by slight oxygen deficiency. Strong PMA is achieved in the YIG film with an η of only 0.4% and a film thickness up to 60 nm, representing the strongest PMA for such a small η reported so far. Combining transmission electron microscopy analyses, magnetic measurements, and a theoretical model, it is demonstrated that the enhancement of PMA physically originates from the reduction of saturation magnetization and the increase of magnetostriction coefficient induced by oxygen deficiency. The Gilbert damping values of the 60-nm-thick YIG films with PMA are on the order of 10-4. This strategy improves the flexibility for the practical applications of YIG-based magnonic devices and provides promising insights for the theoretical understanding and the experimental enhancement of PMA in garnet films.

4.
Front Endocrinol (Lausanne) ; 14: 1059159, 2023.
Article in English | MEDLINE | ID: mdl-37065748

ABSTRACT

Objective: To determine the genetic etiology of a family pedigree with two patients affected by differences of sex development (DSD). Methods: Assess the clinical characteristics of the patients and achieve exome sequencing results and in vitro functional studies. Results: The 15-year-old proband, raised as female, presented with delayed puberty and short stature associated with atypical genitalia. Hormonal profile showed hypergonadotrophic hypogonadism. Imaging studies revealed the absence of a uterus and ovaries. The karyotype confirmed a 46, XY pattern. Her younger brother presented with a micropenis and hypoplastic scrotum with non-palpable testis and hypospadias. Laparoscopic exploration was performed on the younger brother. Streak gonads were found and removed due to the risk of neoplastic transformation. Post-operative histopathology showed the co-existence of Wolffian and Müllerian derivatives. Whole-exome sequencing identified a novel mutation (c.1223C>T, p. Ser408Leu) in the Asp-Glu-Ala-His-box helicase 37 gene, which was found to be deleterious by in silico analysis. Segregation analysis of the variant displayed a sex-limited, autosomal dominant, maternal inheritance pattern. In vitro experiments revealed that the substitution of 408Ser by Leu caused decreased DHX37 expression both at the mRNA and protein levels. Moreover, the ß-catenin protein was upregulated, and the p53 protein was unaltered by mutant DHX37. Conclusions: We described a novel mutation (c.1223C>T, p. Ser408Leu) of the DHX37 gene associated with a Chinese pedigree consisting of two 46, XY DSD patients. We speculated that the underlying molecular mechanism might involve upregulation of the ß-catenin protein.


Subject(s)
Disorder of Sex Development, 46,XY , Gonadal Dysgenesis , Humans , Male , Female , Adolescent , Disorder of Sex Development, 46,XY/genetics , Testis/pathology , Sexual Development , Gonadal Dysgenesis/pathology , Mutation
5.
ACS Appl Mater Interfaces ; 15(9): 11756-11764, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36808940

ABSTRACT

Anionic redox is an effective way to increase the capacity of the cathode materials. Na2Mn3O7 [Na4/7[Mn6/7□1/7]O2, □ for the transition metal (TM) vacancies] with native and ordered TM vacancies can conduct a reversible oxygen redox and be a promising high-energy cathode material for sodium-ion batteries (SIBs). However, its phase transition at low potentials (∼1.5 V vs Na+/Na) induces potential decays. Herein, magnesium (Mg) is doped on the TM vacancies to form a disordered Mn/Mg/□ arrangement in the TM layer. The Mg substitution suppresses the oxygen oxidation at ∼4.2 V by reducing the number of the Na-O-□ configurations. Meanwhile, this flexible disordering structure inhibits the generation of the dissolvable Mn2+ ions and mitigates the phase transition at ∼1.6 V. Therefore, the Mg doping improves the structural stability and its cycling performance in 1.5-4.5 V. The disordering arrangement endows Na0.49Mn0.86Mg0.06□0.08O2 with a higher Na+ diffusivity and improved rate performance. Our study reveals that oxygen oxidation is highly dependent on the ordering/disordering arrangements in the cathode materials. This work provides insights into the balance of anionic and cationic redox for enhancing the structural stability and electrochemical performance in the SIBs.

8.
Nat Commun ; 13(1): 5991, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36220821

ABSTRACT

The investigation of three-dimensional magnetic textures and chirality switching has attracted enormous interest from the perspective of fundamental research. Here, the three-dimensional magnetic structures of skyrmion bubbles in the centrosymmetric magnet MnNiGa were reconstructed with the vector field tomography approach via Lorentz transmission electron microscopy. The magnetic configuration of the bubbles was determined based on the reconstructed magnetic induction (B-field) at their surfaces and centers. We found that the bubbles easily switched their chirality but preserved their polarity to retain their singularity in the matrix of the material. Our results offer valuable insights into the chirality behavior of skyrmion bubbles.

9.
Nat Commun ; 13(1): 5411, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109496

ABSTRACT

It is challenging to search for high Tc superconductivity (SC) in transition metal elements wherein d electrons are usually not favored by conventional BCS theory. Here we report experimental discovery of surprising SC up to 310 GPa with Tc above 20 K in wide pressure range from 108 GPa to 240 GPa in titanium. The maximum Tconset above 26.2 K and zero resistance Tczero of 21 K are record high values hitherto achieved among element superconductors. The Hc2(0) is estimated to be ∼32 Tesla with coherence length 32 Å. The results show strong s-d transfer and d band dominance, indicating correlation driven contributions to high Tc SC in dense titanium. This finding is in sharp contrast to the theoretical predications based on pristine electron-phonon coupling scenario. The study opens a fresh promising avenue for rational design and discovery of high Tc superconductors among simple materials via pressure tuned unconventional mechanism.

10.
Chem Commun (Camb) ; 58(83): 11685-11688, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36173359

ABSTRACT

Vacancies have been proved effective in activating the oxygen redox and stabilizing the structure of the oxide cathode materials for the Na-ion batteries, but their effect on the cathode materials of the Li-ion batteries is unclear. We herein show that they have similar effect on spinel [Li4/7Mn2/7□1/7]8a[Li4/7Mn10/7]16d[O4-x']32e.

11.
J Microsc ; 287(2): 61-68, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35570411

ABSTRACT

Electron energy-loss spectroscopy (EELS) is widely applied combining with transmission electron microscopes with high spatial resolution, but its interpretation is a challenging task. One of the reasons is that the factors affecting EELS are very complicated. In this paper, we focus on the several factors involved in density functional theory (DFT) calculations. The sensitivity of calculated energy-loss near-edge structure (ELNES) to spin order, pressure and on-site Coulomb energy U has been discussed. Since EELS technique detects the local environment of atoms, the influence of spin order cannot be ignored. The chemical shifts and peak intensity of ELNES are also closely related to corresponding pressure. The correlation effects are very important for transition metal compounds and play a key role in EELS simulations. An overview of the effects of these factors on the ELNES is presented with the help of Wien2k code. The antiferromagnetic order results in the decreasing of intensities of related peaks and the moving of the peaks to high energy loss. The decreasing of lattice parameters causes the ELNES peaks to shift to high energy loss, and the peak shifts at the higher energy loss are more significant. The increase of correlation effect leads to the ELNES peaks to shift to high energy loss accompanied by the increase of the relative intensity of the peaks which locate at higher energy loss. Our work helps to understand how these factors affect EELS and to explain and predict the experimental EELS spectra. Through the discussion of these factors, we propose that some factors could not be ignored in EELS simulations.

12.
Nat Commun ; 13(1): 2863, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35606357

ABSTRACT

Searching for superconductivity with Tc near room temperature is of great interest both for fundamental science & many potential applications. Here we report the experimental discovery of superconductivity with maximum critical temperature (Tc) above 210 K in calcium superhydrides, the new alkali earth hydrides experimentally showing superconductivity above 200 K in addition to sulfur hydride & rare-earth hydride system. The materials are synthesized at the synergetic conditions of 160~190 GPa and ~2000 K using diamond anvil cell combined with in-situ laser heating technique. The superconductivity was studied through in-situ high pressure electric conductance measurements in an applied magnetic field for the sample quenched from high temperature while maintained at high pressures. The upper critical field Hc(0) was estimated to be ~268 T while the GL coherent length is ~11 Å. The in-situ synchrotron X-ray diffraction measurements suggest that the synthesized calcium hydrides are primarily composed of CaH6 while there may also exist other calcium hydrides with different hydrogen contents.

13.
ACS Appl Mater Interfaces ; 14(16): 18353-18359, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35417137

ABSTRACT

Li-rich layer-structured oxides are considered promising cathode materials for their specific capacities above 250 mAh·g-1. However, the drawbacks such as poor rate performance, fast capacity fading, and the continuous transition metal (TM) migration into the Li layer hinder their commercial applications. To address these issues, surface doping of Ti and Zr was conducted to the Li- and Mn-rich layered oxide (LMR), Li1.2Mn0.54Ni0.13Co0.13O2. The drop of the average discharge potentials of the Ti- and Zr-doped LMR was reduced by 593 and 346 mV in 100 cycles, respectively. With aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy, we clarified that Ti4+ and Zr4+ ions are located near the surface of the material, anchor the surface oxygen, and stabilize the LMR structure. The difference in the strengths of the Ti-O and Zr-O bonds and the doping-resultant electronic structures were determined with density functional theory (DFT) calculations and soft X-ray absorption spectroscopy (SXAS), responsible for the electrochemical performance of surface-doped materials. These findings verify our modification strategies to enhance the cycling performances of the promising LMR cathode materials.

14.
Adv Mater ; 34(12): e2106728, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35064593

ABSTRACT

The search of novel quasi-1D materials is one of the important aspects in the field of material science. Toroidal moment, the order parameter of ferrotoroidic order, can be generated by a head-to-tail configuration of magnetic moment. It has been theoretically proposed that 1D dimerized and antiferromagnetic (AFM)-like spin chain hosts ferrotoroidicity and has the toroidal moment composed of only two antiparallel spins. Here, the authors report a ferrotoroidic candidate of Ba6 Cr2 S10 with such a theoretical model of spin chain. The structure consists of unique dimerized face-sharing CrS6 octahedral chains along the c axis. An AFM-like ordering at ≈10 K breaks both space- and time-reversal symmetries and the magnetic point group of mm'2'allows three ferroic orders in Ba6 Cr2 S10 : (anti)ferromagnetic, ferroelectric, and ferrotoroidic orders. Their investigation reveals that Ba6 Cr2 S10 is a rare ferrotoroid ic candidate with quasi 1D spin chain, which can be considered as a starting point for the further exploration of the physics and applications of ferrotoroidicity.

15.
J Phys Chem Lett ; 12(25): 5879-5888, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34143633

ABSTRACT

In two-dimensional transitional metal dichalcogenides, tuning the spin-valley-layer coupling via changing layer numbers and stacking orders remains desirable for their application in valleytronics. Herein, six-point star-like MoSe2 nanoflakes simultaneously containing different atom registration regions from monolayer to bilayer with 2H and 3R stacking order were fabricated, and the valley polarizations were comparably investigated by circular polarized photoluminescent spectroscopy. The degree of valley polarization was detected to be about 12.5% in the monolayer and 10% in the 2H bilayer, but greatly upgraded to about 40% in the 3R bilayer MoSe2. This enhancement was attributed to the multiband spin splitting and generation of spin-dependent layer polarization for the 3R MoSe2 bilayer, which is well evidenced by our ab initio calculations of the energy band structures. Our results demonstrate that preparing TMD crystals with controllable stacking orders and interlayer coupling is a promising route to tune the valley index in TMDs for developing valleytronics technology.

16.
Inorg Chem ; 60(9): 6298-6305, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33848160

ABSTRACT

B-site Os-doped quadruple perovskite oxides LaCu3Fe4-xOsxO12 (x = 1 and 2) were prepared under high-pressure and high-temperature conditions. Although parent compound LaCu3Fe4O12 experiences Cu-Fe intermetallic charge transfer that changes the Cu3+/Fe3+ charge combination to Cu2+/Fe3.75+ at 393 K, in the Os-doped samples, the Cu and Fe charge states are found to be constant 2+ and 3+, respectively, indicating the complete suppression of charge transfer. Correspondingly, Os6+ and mixed Os4.5+ valence states are determined by X-ray absorption spectroscopy for x = 1 and x = 2 compositions, respectively. The x = 1 sample crystallizes in an Fe/Os disordered structure with the Im3̅ space group. It experiences a spin-glass transition around 480 K. With further Os substitution up to x = 2, the crystal symmetry changes to Pn3̅, where Fe and Os are orderly distributed in a rocksalt-type fashion at the B site. Moreover, this composition shows a long-range Cu2+(↑)Fe3+(↑)Os4.5+(↓) ferrimagnetic ordering near 520 K. This work provides a rare example for 5d substitution-suppressed intermetallic charge transfer as well as induced structural and magnetic phase transitions with high spin ordering temperature.

17.
Nat Commun ; 12(1): 747, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33531480

ABSTRACT

The simple ABO3 and A-site-ordered AA'3B4O12 perovskites represent two types of classical perovskite functional materials. There are well-known simple perovskites with ferroelectric properties, while there is still no report of ferroelectricity due to symmetry breaking transition in A-site-ordered quadruple perovskites. Here we report the high pressure synthesis of an A-site-ordered perovskite PbHg3Ti4O12, the only known quadruple perovskite that transforms from high-temperature centrosymmetric paraelectric phase to low-temperature non-centrosymmetric ferroelectric phase. The coordination chemistry of Hg2+ is changed from square planar as in typical A-site-ordered quadruple perovskite to a rare stereo type with 8 ligands in PbHg3Ti4O12. Thus PbHg3Ti4O12 appears to be a combinatory link from simple ABO3 perovskites to A-site-ordered AA'3Ti4O12 perovskites, sharing both displacive ferroelectricity with former and structure coordination with latter. This is the only example so far showing ferroelectricity due to symmetry breaking phase transition in AA'3B4O12-type A-site-ordered perovskites, and opens a direction to search for ferroelectric materials.

18.
Inorg Chem ; 59(17): 12445-12452, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32805988

ABSTRACT

A new oxide, LaMn3Co2Mn2O12, was synthesized under high-pressure (7 GPa) and high-temperature (1423 K) conditions. The compound crystallizes in an AA'3B4O12-type quadruple perovskite structure with space group Im3̅. The Rietveld structural analysis combined with soft X-ray absorption spectroscopy reveals the charge combination to be LaMn3+3Co2+2Mn4+2O12, where the La3+ and Mn3+ are 1:3 ordered respectively at the A and A' sites, whereas the Co2+ and Mn4+ are disorderly distributed at the B site. This is in sharp contrast to R2Co2+Mn4+O6 (R = La and rare earth) double perovskites, in which the Co2+ and Mn4+ charge states are always orderly distributed with a rocksalt-type fashion, giving rise to a long-range magnetic ordering. As a result, LaMn3Co2Mn2O12 displays spin glassy magnetic properties due to the random Co2+ and Mn4+ distribution, as demonstrated by dc and ac magnetic susceptibility as well as specific heat measurements. Possible factors that affect the B-site degree of order in perovskite structures are discussed.

19.
Nat Mater ; 19(7): 712-718, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32203458

ABSTRACT

Superelasticity associated with the martensitic transformation has found a broad range of engineering applications1,2. However, the intrinsic hysteresis3 and temperature sensitivity4 of the first-order phase transformation significantly hinder the usage of smart metallic components in many critical areas. Here, we report a large superelasticity up to 15.2% strain in [001]-oriented NiCoFeGa single crystals, exhibiting non-hysteretic mechanical responses, a small temperature dependence and high-energy-storage capability and cyclic stability over a wide temperature and composition range. In situ synchrotron X-ray diffraction measurements show that the superelasticity is correlated with a stress-induced continuous variation of lattice parameter accompanied by structural fluctuation. Neutron diffraction and electron microscopy observations reveal an unprecedented microstructure consisting of atomic-level entanglement of ordered and disordered crystal structures, which can be manipulated to tune the superelasticity. The discovery of the large elasticity related to the entangled structure paves the way for exploiting elastic strain engineering and development of related functional materials.

20.
Angew Chem Int Ed Engl ; 59(21): 8240-8246, 2020 May 18.
Article in English | MEDLINE | ID: mdl-32185857

ABSTRACT

Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure-induced disordering could require recognition of an order-disorder transition in solid-state physics/chemistry and geophysics. Double perovskites Y2 CoIrO6 and Y2 CoRuO6 polymorphs synthesized at 0, 6, and 15 GPa show B-site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long-range ferrimagnetic ordering in the B-site ordered samples are gradually overwhelmed by B-site disorder. Theoretical calculations suggest that unusual unit-cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2 CoIrO6 and Y2 CoRuO6 .

SELECTION OF CITATIONS
SEARCH DETAIL
...