Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36298230

ABSTRACT

Autonomous underwater vehicles (AUVs) play an increasingly essential role in the field of polar ocean exploration, and the Doppler velocity log (DVL)-aided strapdown inertial navigation system (SINS) is widely used for it. Due to the rapid convergence of the meridians, traditional inertial navigation mechanisms fail in the polar region. To tackle this problem, a transverse inertial navigation mechanism based on the earth ellipsoidal model is designed in this paper. Influenced by the harsh environment of the polar regions, unknown and time-varying outlier noise appears in the output of DVL, which makes the performance of the standard Kalman filter degrade. To address this issue, a robust Kalman filter algorithm based on Mahalanobis distance is used to adaptively estimate measurement noise covariance; thus, the Kalman filter gain can be modified to weight the measurement. A trial ship experiment and semi-physical simulation experiment were carried out to verify the effectiveness of the proposed algorithm. The results demonstrate that the proposed algorithm can effectively resist the influence of DVL outliers and improve positioning accuracy.

2.
Sensors (Basel) ; 18(12)2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30558217

ABSTRACT

Strapdown airborne gravimetry is an efficient way to obtain gravity field data. A new method has been developed to improve the accuracy of airborne vector gravimetry. The method introduces a backward strapdown navigation algorithm into the strapdown gravimetry, which is the reverse process of forward algorithm. Compared with the forward algorithm, the backward algorithm has the same performance in the condition of no sensor error, but has different error characteristics in actual conditions. The differences of the two algorithms in the strapdown gravimetry data processing are presented by simulations, which show that the two algorithms have different performance in the horizontal attitude measurement and convergence of integrated navigation filter. On the basis of detailed analysis, the procedures of accuracy improvement method are presented. The result of this method is very promising when applying to an actual flight test carried out by a SGA-WZ02 strapdown gravimeter. After applying the proposed method, the repeatability of two gravity disturbance horizontal components were 1.83 mGal and 1.80 mGal under the resolution of 6 km, which validate the effectiveness of the method. Furthermore, the wavenumber correlation filter is also discussed as an alternative data fusion method.

3.
Sensors (Basel) ; 18(2)2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29462902

ABSTRACT

The ring laser gyro (RLG) dither axis will bend and exhibit errors due to the specific forces acting on the instrument, which are known as g-sensitive misalignments of the gyros. The g-sensitive misalignments of the RLG triad will cause severe attitude error in vibration or maneuver environments where large-amplitude specific forces and angular rates coexist. However, g-sensitive misalignments are usually ignored when calibrating the strapdown inertial navigation system (SINS). This paper proposes a novel method to calibrate the g-sensitive misalignments of an RLG triad in linear vibration environments. With the SINS is attached to a linear vibration bench through outer rubber dampers, rocking of the SINS can occur when the linear vibration is performed on the SINS. Therefore, linear vibration environments can be created to simulate the harsh environment during aircraft flight. By analyzing the mathematical model of g-sensitive misalignments, the relationship between attitude errors and specific forces as well as angular rates is established, whereby a calibration scheme with approximately optimal observations is designed. Vibration experiments are conducted to calibrate g-sensitive misalignments of the RLG triad. Vibration tests also show that SINS velocity error decreases significantly after g-sensitive misalignments compensation.

4.
Sensors (Basel) ; 18(2)2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29373535

ABSTRACT

Quality assessment is an important part in the strapdown airborne gravimetry. Root mean square error (RMSE) evaluation method is a classical way to evaluate the gravimetry quality, but classical evaluation methods are preconditioned by extra flight or reference data. Thus, a method, which is able to largely conquer the premises of classical quality assessment methods and can be used in single survey line, has been developed in this paper. According to theoretical analysis, the method chooses the stability of two horizontal attitude angles, horizontal specific force and vertical specific force as the determinants of quality assessment method. The actual data, collected by SGA-WZ02 from 13 flights 21 lines in certain survey, was used to build the model and elaborate the method. To substantiate the performance of the quality assessment model, the model is applied in extra repeat line flights from two surveys. Compared with internal RMSE, standard deviation of assessment residuals are 0.23 mGal and 0.16 mGal in two surveys, which shows that the quality assessment method is reliable and stricter. The extra flights are not necessary by specially arranging the route of flights. The method, summarized from SGA-WZ02, is a feasible approach to assess gravimetry quality using single line data and is also suitable for other strapdown gravimeters.

6.
Sensors (Basel) ; 15(9): 23477-95, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26389916

ABSTRACT

In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter-SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS), a Global Navigation Satellite System (GNSS) remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS) of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

SELECTION OF CITATIONS
SEARCH DETAIL
...