Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1047973, 2023.
Article in English | MEDLINE | ID: mdl-36845750

ABSTRACT

Breast cancer (BRCA) remains the most prevalent cancer worldwide and the tumor microenvironment (TME) has been discovered to exert a wide influence on the overall survival and therapeutic response. Numerous lines of evidence reported that the effects of immunotherapy of BRCA were manipulated by TME. Immunogenic cell death (ICD) is a form of regulated cell death (RCD) that is capable of fueling adaptive immune responses and aberrant expression of ICD-related genes (ICDRGs) can govern the TME system by emitting danger signals or damage-associated molecular patterns (DAMPs). In the current study, we obtained 34 key ICDRGs in BRCA. Subsequently, using the transcriptome data of BRCA from the TCGA database, we constructed a risk signature based on 6 vital ICDRGs, which had a good performance in predicting the overall survival of BRCA patients. We also examined the efficacy of our risk signature in the validation dataset (GSE20711) in the GEO database and it performed excellently. According to the risk model, patients with BRCA were divided into high-risk and low-risk groups. Also, the unique immune characteristics and TME between the two subgroups and 10 promising small molecule drugs targeting BRCA patients with different ICDRGs risk have been investigated. The low-risk group had good immunity indicated by T cell infiltration and high immune checkpoint expression. Moreover, the BRCA samples could be divided into three immune subtypes according to immune response severity (ISA, ISB, and ISC). ISA and ISB predominated in the low-risk group and patients in the low-risk group exhibited a more vigorous immune response. In conclusion, we developed an ICDRGs-based risk signature that can predict the prognosis of BRCA patients and offer a novel therapeutic strategy for immunotherapy, which would be of great significance in the BRCA clinical setting.

2.
Dis Markers ; 2022: 1014347, 2022.
Article in English | MEDLINE | ID: mdl-36097539

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSCC) is a frequently lethal malignancy, and the mortality is considerably high. The tumor microenvironment (TME) has been identified as a critical participation in cancer development, treatment, and prognosis. However, competing endogenous RNA (ceRNA) networks grouping with immune/stromal scores of HNSCC patients need to be further illustrated. Therefore, our study aimed to provide clues for searching promising prognostic markers of TME in HNSCC. Materials and Methods: ESTIMATE algorithm was used to calculate immune scores and stromal scores of the enrolled HNSCC patients. Differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified by comparing the expression difference between high and low immune/stromal scores. Then, a ceRNA network and protein-protein interaction (PPI) network were constructed for selecting hub regulators. In addition, survival analysis was performed to access the association between immune scores, stromal scores, and differentially expressed RNAs in the ceRNA network and the overall survival (OS) of HNSCC patients. Then, the GSE65858 datasets from Gene Expression Omnibus (GEO) database was used for verification. At last, the difference between the clinical characteristics and immune cell infiltration in different expression groups of IL10RA, PRF1, and IL2RA was analyzed. Results: Survival analysis showed a better OS in the high immune score group, and then we constructed a ceRNA network composed of 97 DEGs, 79 DELs and 22 DEMs. Within the ceRNA network, FOXP3, IL10RA, STAT5A, PRF1, IL2RA, miR-148a-3p, miR-3065-3p, and lncRNAs, including CXCR2P1, HNRNPA1P21, CTA-384D8.36, and IGHV1OR15-2, were closely correlated with the OS of HNSCC patients. Especially, using the data from GSE65858, we successfully verified that IL10RA, PRF1, and IL2RA were not only significantly upregulated in patients high immune scores, but also their high expressions were associated with longer survival time. In addition, stratified analysis showed that PRF1 and IL2RA might be involved in the mechanism of tumor progress. Conclusion: In conclusion, we constructed a ceRNA network related to the TME of HNSCC, which provides candidates for therapeutic intervention and prognosis evaluation.


Subject(s)
Head and Neck Neoplasms , MicroRNAs , RNA, Long Noncoding , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Head and Neck Neoplasms/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Microenvironment/genetics
3.
J Immunol Res ; 2022: 3129765, 2022.
Article in English | MEDLINE | ID: mdl-36033394

ABSTRACT

Background: Immune checkpoint inhibitors (ICIs) have rapidly revolutionized colorectal cancer (CRC) treatment, but resistance caused by the heterogeneous tumor microenvironment (TME) still presents a challenge. Therefore, it is necessary to characterize TME immune infiltration and explore new targets to improve immunotherapy. Methods: The compositions of 64 types of infiltrating immune cells and their relationships with CRC patient clinical characteristics were assessed. Differentially expressed genes (DEGs) between "hot" and "cold" tumors were used for functional analysis. A prediction model was constructed to explore the survival of CRC patients treated with and without immunotherapy. Finally, fatty acid-binding protein (FABP6) was selected for in vitro experiments, which revealed its roles in the proliferation, apoptosis, migration, and immunogenicity of CRC tissues and cell lines. Results: The infiltration levels of several immune cells were associated with CRC tumor stage and prognosis. Different cell types showed the synergistic or antagonism infiltration patterns. Enrichment analysis of DEGs revealed that immune-related signaling was significantly activated in hot tumors, while metabolic process pathways were altered in cold tumors. In addition, the constructed model effectively predicted the survival of CRC patients treated with and without immunotherapy. FABP6 knockdown did not significantly alter tumor cell proliferation, apoptosis, and migration. FABP6 was negatively correlated with immune infiltration, and knockdown of FABP6 increased major histocompatibility complex (MHC) class 1 expression and promoted immune-related chemokine secretion, indicating the immunogenicity enhancement of tumor cells. Finally, knockdown of FABP6 could promote the recruitment of CD8+ T cells. Conclusion: Collectively, we described the landscape of immune infiltration in CRC and identified FABP6 as a potential immunotherapeutic target for treatment.


Subject(s)
Colorectal Neoplasms , Fatty Acid-Binding Proteins/metabolism , Gastrointestinal Hormones/metabolism , Humans , Lymphocytes, Tumor-Infiltrating , Prognosis , Tumor Microenvironment
4.
Dis Markers ; 2022: 3846010, 2022.
Article in English | MEDLINE | ID: mdl-35493305

ABSTRACT

Background: Breast cancer (BC) is a highly heterogeneous disease with high morbidity and mortality. Its subtypes may have distinctly different biological behaviors, clinical outcomes, and therapeutic responses. The metabolic status of BC tissue is closely related to its progress. Therefore, we comprehensively characterized the function of metabolic genes in BC and identified new biomarkers to predict BC patients' prognoses. Methods: Metabolic genes were identified by intersecting genes obtained from two published pieces of literature. The function of metabolic genes in BC was determined by extracting differentially expressed genes (DEGs), performing functional enrichment analyses, analyzing the infiltrating proportion of immune cells, and conducting metabolic subgroup analyses. A risk score model was constructed to assess the prognoses of BC patients by performing the univariate Cox regression, LASSO algorithm, multivariate Cox regression, Kaplan-Meier survival analyses, and ROC curve analyses in the training set. The prognostic model was then validated on the testing dataset, external dataset, the whole TCGA-BC database, and our clinical specimens. Finally, a nomogram was constructed for clinical prognostic prediction based on the risk score model and other clinicopathological parameters. Results: 955 metabolic genes were obtained. Among these, 157 metabolic DEGs were identified between BC and normal tissues for subsequent GO and KEGG pathway enrichment analyses. 5 metabolic genes were negatively correlated with CD8+ T cells, while 49 genes were positively correlated with CD8+ T cells. Furthermore, 5 metabolic subgroups with varying proportions of PAM50 subtypes, TNM classification, and immune cell infiltration were obtained. Finally, a risk score model was constructed to predict the prognoses of BC patients, and a nomogram incorporating the risk score model was established for clinical application. Conclusion: In this study, we elucidated tumor heterogeneity from metabolite profiling of BC. The roles of metabolic genes in the occurrence of BC were comprehensively characterized, clarifying the relationship between the tumor microenvironment (TME) and metabolic genes. Meanwhile, a concise prediction model was also constructed based on metabolic genes, providing a convenient and precise method for the individualized diagnosis and treatment of BC patients.


Subject(s)
Breast Neoplasms , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/metabolism , Female , Humans , Neoplasm Staging , Nomograms , Prognosis , Tumor Microenvironment
5.
Article in English | MEDLINE | ID: mdl-35328888

ABSTRACT

In the context of rapid urbanisation and an emerging need for a healthy urban environment, revitalising urban spaces and its effects on the urban eco-environment in Chinese cities have attracted widespread attention. This study assessed urban vibrancy from the dimensions of density, accessibility, liveability, diversity, and human activity, with various indicators using an adjusted spatial TOPSIS (technique for order preference by similarity to an ideal solution) method. The study also explored the effects of urban vibrancy on the urban eco-environment by interpreting PM 2.5 and land surface temperature using "big" and "dynamic" data, such as those from mobile and social network data. Thereafter, spatial modelling was performed to investigate the influence of urban vibrancy on air pollution and temperature with inverted and extracted remote sensing data. This process identified spatial heterogeneity and spatial autocorrelation. The majority of the dimensions, such as density, accessibility, liveability, and diversity, are negatively correlated with PM 2.5, thereby indicating that the advancement of urban vibrancy in these dimensions potentially improves air quality. Conversely, improved accessibility increases the surface temperature in most of the districts, and large-scale infrastructure construction generally contributes to the increase. Diversity and human activity appear to have a cooling effect. In the future, applying spatial heterogeneity is advised to assess urban vibrancy and its effect on the urban eco-environment, to provide valuable references for spatial urban planning, improve public health and human wellbeing, and ensure sustainable urban development.


Subject(s)
City Planning , Urban Renewal , China , Cities , City Planning/methods , Humans , Particulate Matter , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...