Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37896299

ABSTRACT

In this research, a self-reinforced composite material was manufactured using a single polyethylene material, and this self-reinforced composite material has excellent recyclability and is environmentally friendly compared to composite materials composed of other types of material, such as glass fiber reinforced composites (GFRP) and carbon fiber reinforced composites (CFRP). In this research, the manufactured self-reinforced composite material consists of an outer layer and an inner layer. To manufacture the outer layer, low density polyethylene (LDPE) films were laminated on high density polyethylene (HDPE) fabrics and knitted fabrics, and composite materials were prepared at various temperatures using hot stamping. A 3D printing process was utilized to manufacture the inner layer. After designing a structure with a cross-sectional shape of a triangle, circle, or hexagon, the inner layer structure was manufactured by 3D printing high-density polyethylene material. As an adhesive film for bonding the outer layer and the inner layer, a polyethylene-based self-reinforced composite material was prepared using a low-density polyethylene material. Input data for simulation of self-reinforced composite materials were obtained through tensile property analysis using a universal testing machine (UTM, Shimadzu, Kyoto, Japan), and the physical property values derived as output data and actual experimental values were obtained. As a result of the comparison, the error rate between simulation data and experimental data was 5.4% when the shape of the inner layer of self-reinforced composite material was a hexagon, 3.6% when it was a circle, and 7.8% when a triangular shape showed the highest value. Simulation in a virtual space can reduce the time and cost required for actual research and can be important data for producing high-quality products.

2.
Polymers (Basel) ; 16(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38201763

ABSTRACT

In this research, we attempted to develop paints that can be applied to various fields such as high-rise building structures and electric vehicle batteries. To minimize damage to life and property in the event of a fire, we attempted to manufacture a highly elastic paint material that can block flames and control smoke spread, and that has additional sound insulation and waterproofing functions. A high-elasticity paint was manufactured by mixing a flame-retardant polyurethane dispersion (PUD) with an acrylic emulsion binder and adding different mass fractions of expandable graphite (EG). The thermal, physical, and morphological properties of the prepared mixed paint were analyzed. The thermal properties of the mixed paint were analyzed and intended to be used as input data (heat transfer coefficient, specific heat capacity) for fire simulation. Output data were used to predict how much the temperature would change depending on the time of fire occurrence. The reason for conducting simulations on the fire stability of paint materials is that the fire stability of paints can be predicted without conducting fire tests. Two hours after the fire broke out, the thermal temperature distribution was analyzed. The temperature distribution was compared with and without mixed paint. Two hours after a fire broke out in a virtual space, it was found that when the mixed paint was applied, the surrounding temperature of the penetration area was lower than when the mixed paint was not applied. Development costs for developing excellent paints can be reduced. Since fire safety can be predicted without actually conducting tests, the time required for product development can be reduced. We are confident that this is a very groundbreaking technology because it allows fire safety simulations for developed products to be conducted in a virtual space by creating an environment similar to actual fire test standards.

3.
Polymers (Basel) ; 14(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35267851

ABSTRACT

Recently, the automobile industry has demanded weight reduction, so research on materials is being actively conducted. Among this research, carbon fiber-reinforced composite materials are being studied a lot in the automobile industry due to their excellent mechanical properties, chemical resistance, and heat resistance. However, carbon fiber-reinforced composite materials have disadvantages, in that they are not free from color selection, and have weak interfacial bonding strength. In this study, a colored epoxy resin was prepared by mixing epoxy-which is a thermosetting resin according to the pigment concentration (0.1, 0.3, 0.5, 1.0 wt%)-and curing shrinkage. Thermal expansion characteristics were analyzed and the concentration of 0.5 wt% pigment showed the lowest shrinkage and thermal expansion characteristics. In addition, to measure the interfacial shear strength (IFSS) of the carbon fiber and the colored epoxy resin, the IFSS was obtained by performing a microdroplet debonding test, and the strength of the pigment concentration of 0.5 wt% was reduced to a relatively low level. Through these experiments, it was determined that an epoxy resin in which 0.5 wt% pigment is mixed is the optimal condition. Finally, using the composite material modeling software (Digimat 2020.0), the representative volume element (RVE) of the meso-scale was set, and interfacial properties of carbon fibers and colored epoxy resins were analyzed by interworking with general-purpose finite element analysis software (Abaqus CAE).

4.
J Exerc Rehabil ; 9(2): 286-91, 2013 Apr.
Article in English | MEDLINE | ID: mdl-24278873

ABSTRACT

The purpose of this study was to effects of abdominal draw-in maneuver and core exercise with 4 weeks using the musculoskeletal ultrasonography on muscle thickness and disability in subjects with low back pain. Twenty patients with nonspecific back pain (abdominal draw-in maneuver group: n= 10, core exercise group: n= 10) were recruited in the study. Both group received exercise intervention 3 times a week for 4weeks. The test were based on muscle thickness (transversus abdominis; Tra, internal oblique; IO and external oblique; EO), disability (Oswestry disability index; ODI) measured immediately before and after intervention. The data was measured by SPSS program 12.0 version and analyzed by Paired t-test and Independent t-test. The following results were obtained. The thickness of IO, EO for both group significantly improved except for muscle thickness of Tra. The ODI were significant difference for both groups. As the results of this study, we suggest that it may be effective method to apply to increase for the thickness of Tra, EO using abdominal draw-in maneuver and thickness of IO using core exercise.

5.
J Exerc Rehabil ; 9(3): 362-7, 2013.
Article in English | MEDLINE | ID: mdl-24278885

ABSTRACT

The purpose of this study was to examine the effects of core stability-enhancing exercises on the lower trunk and muscle activity of stroke patients. The control group (n = 10) underwent standard exercise therapy, while the experiment group (n =10) underwent both the core stability-enhancing exercise and standard exercise therapy simultaneously. The standard exercise therapy applied to the two groups included weight bearing and weight shifts and joint movements to improve flexibility and the range of motion. The core stability-enhancing exercise was performed 5 times a week for 30 min over a period of 4 weeks in the room where the patients were treated. For all 20 subject, the items measured before the exercise were measured after the therapeutic intervention, and changes in muscle activity of the lower trunk were evaluated. The activity and stability of the core muscles were measured using surface electromyography and the trunk impairment scale (TIS). The mean TIS score and muscle activity of the lower trunk increased in the experiment group significantly after performing the core stability-enhancing exercise (P<0.05). The results of this study show that the core stability-enhancing exercise is effective in improving muscle activity of the lower trunk, which is affected by hemiplegia.

SELECTION OF CITATIONS
SEARCH DETAIL
...