Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 32(3): 107893, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32697999

ABSTRACT

Sarcomeres, the fundamental contractile units of muscles, are conserved structures composed of actin thin filaments and myosin thick filaments. How sarcomeres are formed and maintained is not well understood. Here, we show that knockdown of Drosophila cofilin (DmCFL), an actin depolymerizing factor, disrupts both sarcomere structure and muscle function. The loss of DmCFL also results in the formation of sarcomeric protein aggregates and impairs sarcomere addition during growth. The activation of the proteasome delays muscle deterioration in our model. Furthermore, we investigate how a point mutation in CFL2 that causes nemaline myopathy (NM) in humans affects CFL function and leads to the muscle phenotypes observed in vivo. Our data provide significant insights to the role of CFLs during sarcomere formation, as well as mechanistic implications for disease progression in NM patients.


Subject(s)
Actin Depolymerizing Factors/metabolism , Drosophila melanogaster/metabolism , Muscle Development , Muscle Weakness/metabolism , Muscles/metabolism , Muscles/pathology , Organogenesis , Sarcomeres/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Amino Acid Sequence , Animals , Cofilin 2/chemistry , Cofilin 2/genetics , Gene Knockdown Techniques , Humans , Myopathies, Nemaline/genetics , Phenotype , Point Mutation , Proteasome Endopeptidase Complex/metabolism , Protein Aggregates , Tropomodulin/metabolism , Troponin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...