Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(8): 3919-3930, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36723258

ABSTRACT

In catalyzed electrochemical reactions, a general strategy is to modify electrode materials to increase the efficiency of the reaction. From the viewpoint of environmental protection, electrochemical reactions should be performed in an inert green water phase. In this study, we report active pure liquid water (named PV), which was collected from the condensed vapor of heated gold (Au)-containing plasmon-activated water (PAW) with a distinct structure of electron-doping and reduced hydrogen bonding (HB). The resulting PV also exhibited distinct properties of the formation of stronger intermolecular HB with alcohols, and notable activities in catalytic electrochemical reactions, compared to bulk deionized water (DIW). Moreover, the measured diffusion coefficients of water increased by ca. 30% in PV solutions. Two typical electrochemical reactions significantly increased peak currents observed in oxidation-reduction cycles (ORCs) with roughening of the Au substrate and in a model of reversible oxidation-reduction reactions on a platinum (Pt) substrate. Also, PV enhanced hydrogen evolution reactions (HERs) on catalytic Pt and inert stainless steel substrates in PV-based solutions at different pH values, compared to DIW. Moreover, these activities of PV were more marked, even better than those of PAW, when PV was collected under a higher heating rate used to heat PAW. Active pure PV has emerged as a promising green solvent applicable to various chemical reactions with more efficiency.

2.
Sci Rep ; 10(1): 20868, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33257784

ABSTRACT

Nowadays, solar energy is the most environmentally friendly energy source to drive many chemical reactions and physical processes. However, the corresponding fabrication procedures for obtaining excellent energy-storage devices are relatively complicated and expensive. In this work, we report an innovative strategy on plasmon-activated water (PAW) serving as energy-storage medium from solar energy. The lifetime of the created energetic PAW solution from hot electron transfer (HET) on Au nanoparticles (AuNPs) illuminated with sunshine can last for 2 days, making the energy-storage system is practically available. Encouragingly, the energy-conversion efficiency from the solar energy in the PAW solution is ca. 6.7%. Compared to conventional deionized (DI) water solution, the prepared metastable PAW solution exhibited distinctly higher chemical potential at room temperature. It demonstrates abilities in faster evaporation and enhancing chemical reactions, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Our proposed strategy on the simple and cheap energy-storage system based on prepared PAW utilizing solar energy is the first time shown in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...