Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 12(1): 291, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052800

ABSTRACT

Wavelength-selective thermal emitters (WS-TEs) have been frequently designed to achieve desired target emissivity spectra, as a typical emissivity engineering, for broad applications such as thermal camouflage, radiative cooling, and gas sensing, etc. However, previous designs require prior knowledge of materials or structures for different applications and the designed WS-TEs usually vary from applications to applications in terms of materials and structures, thus lacking of a general design framework for emissivity engineering across different applications. Moreover, previous designs fail to tackle the simultaneous design of both materials and structures, as they either fix materials to design structures or fix structures to select suitable materials. Herein, we employ the deep Q-learning network algorithm, a reinforcement learning method based on deep learning framework, to design multilayer WS-TEs. To demonstrate the general validity, three WS-TEs are designed for various applications, including thermal camouflage, radiative cooling and gas sensing, which are then fabricated and measured. The merits of the deep Q-learning algorithm include that it can (1) offer a general design framework for WS-TEs beyond one-dimensional multilayer structures; (2) autonomously select suitable materials from a self-built material library and (3) autonomously optimize structural parameters for the target emissivity spectra. The present framework is demonstrated to be feasible and efficient in designing WS-TEs across different applications, and the design parameters are highly scalable in materials, structures, dimensions, and the target functions, offering a general framework for emissivity engineering and paving the way for efficient design of nonlinear optimization problems beyond thermal metamaterials.

2.
Nat Commun ; 14(1): 4694, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37542047

ABSTRACT

Multispectral camouflage technologies, especially in the most frequently-used visible and infrared (VIS-IR) bands, are in increasing demand for the ever-growing multispectral detection technologies. Nevertheless, the efficient design of proper materials and structures for VIS-IR camouflage is still challenging because of the stringent requirement for selective spectra in a large VIS-IR wavelength range and the increasing demand for flexible color and infrared signal adaptivity. Here, a material-informatics-based inverse design framework is proposed to efficiently design multilayer germanium (Ge) and zinc sulfide (ZnS) metamaterials by evaluating only ~1% of the total candidates. The designed metamaterials exhibit excellent color matching and infrared camouflage performance from different observation angles and temperatures through both simulations and infrared experiments. The present material informatics inverse design framework is highly efficient and can be applied to other multi-objective optimization problems beyond multispectral camouflage.

SELECTION OF CITATIONS
SEARCH DETAIL
...