Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Clin Transl Med ; 14(4): e1658, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38659080

ABSTRACT

BACKGROUND: Chordoma, a rare bone tumour with aggressive local invasion and high recurrence rate with limited understanding of its molecular mechanisms. Circular RNAs (circRNAs) have been extensively implicated in tumorigenesis, yet their involvement in chordoma remains largely unexplored. N6-methyladenosine (m6A) modification holds a crucial function in regulating protein translation, RNA degradation and transcription. METHODS: Initially, screening and validation of circTEAD1 in chordoma were conducted by high-throughput sequencing. Subsequently, sh-circTEAD1 and an overexpression plasmid were constructed. Colony formation assays, cell counting kit-8, Transwell and wound healing assays were utilized to validate the function of circTEAD1 in vitro. RNA pull-down assays identified the binding proteins of circTEAD1, which underwent verification through RNA immunoprecipitation (RIP). Methylated RIP assays were conducted to detect the m6A binding sites. Following this, luciferase assay, RT-qPCR, RIP and Western blotting analyses were conducted, revealing that Yap1 was the direct target of circTEAD1. Afterwards, the same methods were utilized for the validation of the function of Yap1 in chordoma in vitro. Finally, the regulatory relationship between circTEAD1 and Yap1 in chordoma was verified by an in vivo tumour formation assay. RESULTS: CircTEAD1 was identified as an upregulated circRNA in chordoma specimens, with heightened circTEAD1 expression emerging as a prognostic indicator. In vitro experiments convincingly demonstrated that circTEAD1 significantly promoted chordoma cell invasion, migration and aggressiveness. Furthermore, the analysis revealed that methyltransferase-like 3-mediated m6A modification facilitated the cytoplasmic export of circTEAD1. The circTEAD1/IGF2BP3/Yap1 mRNA RNA-protein ternary complex not only bolstered the stability of Yap1 mRNA but also exerted a pivotal role in driving chordoma tumorigenesis. CONCLUSIONS: In this study, the role of m6A-modified circTEAD1 in chordoma was identified. The findings offer novel insights into the potential molecular targets for chordoma therapy, shedding light on the intricate interplay between circRNAs, m6A modification and Yap1 mRNA in chordoma pathogenesis.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , Chordoma , RNA, Circular , Transcription Factors , YAP-Signaling Proteins , Humans , Adenosine/metabolism , Adenosine/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Chordoma/genetics , Chordoma/pathology , Chordoma/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Carcinogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Mice , Cell Line, Tumor
2.
Small ; 20(8): e2306267, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37840405

ABSTRACT

Heteroatom-doped layered porous carbons are recently regarded as promising electrode materials for high energy density supercapacitors because they can integrate high-level heteroatom-doping and layered nano-space together to provide huge pseudocapacitive reaction areas and accelerate ion diffusion/transport. Herein, an innovative strategy is reported to prepare N/B/O co-doped layered porous carbons via ammonium folate-reinforced self-assembly of gelatin and boric acid followed by carbonization. Biomass-derived ammonium folate not only acts as an N-riched precursor but also can fasten in the process of self-assembly via boric acid-assisted electrostatic adsorption and hydrogen bonding to promote the formation of stable 3D cross-linked networks, resulting in the obtained N/B/O co-doped layered porous carbon (BNLC-850) has a large specific surface area (1822 m2 g-1 ), hierarchical porous structure and super-high heteroatom contents (N, 12.65; B, 5.67; and O, 13.84 at.%). The BNLC-850 achieves an ultrahigh specific capacitance of 525.2 F g-1 in the alkaline electrolyte at 0.5 A g-1 , meanwhile, DFT calculations reveal that the high-level N/B/O-doping can effectively weaken the adsorption barriers of K-ions. Moreover, the BNLC-850 assembles anti-freezing flexible solid-state supercapacitors in MPEI-TF-IL gel polymer electrolyte deliver a high energy density of 41.2 Wh kg-1 , excellent flexibility, and long cycle-life at -20 °C.

3.
Comput Biol Med ; 169: 107878, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141446

ABSTRACT

Computer-aided diagnosis (CAD) systems play vital roles in the early detection of pulmonary nodules for reducing lung cancer mortality rates. To provide better services for professional doctors, this paper proposes an efficient open-source CAD platform with flexible equipments, user-friendly interfaces, and completed functions for 3D CT pulmonary nodule analysis. For the platform's design and implementation, we fully consider application scenarios and system requirements. The platform supplies core functions for (1) Basic Image Processing, (2) Intelligent Image Analysis, (3) Multi-View Image Visualization, (4) Report Editing and Generation, (5) User Information Management, and (6) Inference Service Monitoring. Specifically, other state-of-the-art or user-defined algorithms can be integrated as plugin modules with no interference for system architecture. System evaluation with use-case testing demonstrates the effectiveness and universality of the proposed platform.


Subject(s)
Lung Neoplasms , Solitary Pulmonary Nodule , Humans , Tomography, X-Ray Computed/methods , Lung Neoplasms/diagnostic imaging , Solitary Pulmonary Nodule/diagnostic imaging , Lung , Algorithms , Diagnosis, Computer-Assisted/methods , Radiographic Image Interpretation, Computer-Assisted/methods
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37108320

ABSTRACT

As an innovative technology in biological applications, cold plasma is widely used in oral treatment, tissue regeneration, wound healing, and cancer therapy, etc., because of the adjustable composition and temperature which allow the plasma to react with bio-objects safely. Reactive oxygen species (ROS) produced by cold plasma regulate cell activity in an intensity- and time-dependent manner. A low level of ROS produced by cold plasma treatment within the appropriate intensities and times promotes proliferation of skin-related cells and increases angiogenesis, which aid in the acceleration of the wound healing process, while a high level of ROS produced by cold plasma treatment performed at a high intensity or over a long period of time inhibits the proliferation of endothelial cells, keratinocytes, fibroblasts, and cancer cells. Moreover, cold plasma can regulate stem cell proliferation by changing niche interface and producing nitric oxide directly. However, the molecular mechanism of cold plasma regulating cell activity and its potential application in the field of animal husbandry remain unclear in the literature. Therefore, this paper reviews the effects and possible regulatory mechanisms of cold plasma on the activities of endothelial cells, keratinocytes, fibroblasts, stem cells, and cancer cells to provide a theoretical basis for the application of cold plasma to skin-wound healing and cancer therapy. In addition, cold plasma exposure at a high intensity or an extended time shows excellent performances in killing various microorganisms existing in the environment or on the surface of animal food, and preparing inactivated vaccines, while cold plasma treatment within the appropriate conditions improves chicken growth and reproductive capacity. This paper introduces the potential applications of cold plasma treatment in relation to animal-breeding environments, animal health, their growth and reproduction, and animal food processing and preservation, which are all beneficial to the practice of animal husbandry and guarantee good animal food safety results.


Subject(s)
Plasma Gases , Animals , Plasma Gases/pharmacology , Plasma Gases/therapeutic use , Plasma Gases/metabolism , Endothelial Cells , Reactive Oxygen Species/metabolism , Skin/metabolism , Keratinocytes/metabolism , Cell Proliferation , Fibroblasts/metabolism
5.
Appl Microbiol Biotechnol ; 106(22): 7491-7503, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36239763

ABSTRACT

The low production of natural products (NPs) is still the critical restrictive factor in exploiting their potential large-scale applications and a barrier to isolating and identifying other meaningful products. Given that the stimulation of cell wall integrity (CWI) has become a novel strategy to modulate the production of microbial natural products, herein, exogenous ß-glucanase treatment was developed as an external cell wall ß-glucan stress to stimulate the fungal CWI, and then to improve the production of fungal NPs. It was found that the production of fungal NPs cercosporin and sophorolipids, biosynthesized by Cercospora sp. and Starmerella bombicola, respectively, was significantly improved by the treatment of ß-glucanase under a controllable dose. Moreover, it demonstrated that ß-glucanase had an ability to stimulate fungal CWI through slight fungal superficial damage, thus facilitating the secretion of NPs. We expected that this easy-operating method to stimulate fungal CWI could be feasible to improve more fungal NPs production. KEY POINTS: • Exogenous ß-glucanase stimulated the fungal cell wall integrity • Changing fungal cell walls modulated natural product production • ß-glucanase with potential universal effects on more fungal natural products.


Subject(s)
Biological Products , beta-Glucans , Fungal Proteins , Biological Products/pharmacology , Cell Wall
6.
Appl Microbiol Biotechnol ; 106(5-6): 1905-1917, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35218387

ABSTRACT

Glutathione (GSH) is a metabolite that plays an important role in the fields of pharmacy, food, and cosmetics. Thus, it is necessary to increase its production to meet the demands. In this study, ScGSH1, ScGSH2, and StGshF were heterologously expressed in Pichia pastoris GS115 to realize the dual-path synthesis of GSH in yeast. To explore the effects of ATP metabolism on the synthesis of GSH, enzymes (ScADK1, PpADK1, VsVHB) of the ATP-related metabolic pathway and the energy co-substrate sodium citrate were taken into account. We found that both ScADK1 and sodium citrate had a positive influence on the synthesis of GSH. Then, a fermentation experiment in Erlenmeyer flasks was performed using the G3-SF strain (containing ScGSH1, ScGSH2, StGshF, and ScADK1), with the highest GSH titer and yield of 999.33 ± 47.26 mg/L and 91.53 ± 4.70 mg/g, respectively. Finally, the fermentation was scaled up in a 5-L fermentor, and the highest titer and yield were improved to 5680 mg/L and 45.13 mg/g, respectively, by optimizing the addition conditions of amino acids (40 mM added after 40 h). Our work provides an alternative strategy by combining dual-path synthesis with energy metabolism regulation and precursor feeding to improve GSH production. Key Points • ScGSH1, ScGSH2, and StGshF were overexpressed to achieve dual-path synthesis of GSH in yeast. • ScADK1 was overexpressed, and sodium citrate was added to increase the energy supply for GSH synthesis. • The addition conditions of amino acids were optimized to realize the efficient synthesis of GSH.


Subject(s)
Bioreactors , Pichia , Fermentation , Glutathione , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomycetales
7.
Microb Cell Fact ; 20(1): 100, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33992112

ABSTRACT

BACKGROUND: Owing to the excellent properties of photosensitization, cercosporin, one of naturally occurring perylenequinonoid pigments, has been widely used in photodynamic therapy, or as an antimicrobial agent and an organophotocatalyst. However, because of low efficiency of total chemical synthesis and low yield of current microbial fermentation, the limited production restricts its broad applications. Thus, the strategies to improve the production of cercosporin were highly desired. Besides traditional optimization methods, here we screened leaf-spot-disease-related endophytic bacteria to co-culture with our previous identified Cercospora sp. JNU001 to increase cercosporin production. RESULTS: Bacillus velezensis B04 and Lysinibacillus sp. B15 isolated from leaves with leaf spot diseases were found to facilitate cercosporin secretion into the broth and then enhance the production of cercosporin. After 4 days of co-culture, Bacillus velezensis B04 allowed to increase the production of cercosporin from 128.2 mg/L to 984.4 mg/L, which was 7.68-fold of the previously reported one. Lysinibacillus sp. B15 could also enhance the production of cercosporin with a yield of 626.3 mg/L, which was 4.89-fold higher than the starting condition. More importantly, we found that bacteria B04 and B15 employed two different mechanisms to improve the production of cercosporin, in which B04 facilitated cercosporin secretion into the broth by loosening and damaging the hyphae surface of Cercospora sp. JNU001 while B15 could adsorb cercosporin to improve its secretion. CONCLUSIONS: We here established a novel and effective co-culture method to improve the production of cercosporin by increasing its secretion ability from Cercospora sp. JNU001, allowing to develop more potential applications of cercosporin.


Subject(s)
Cercospora/metabolism , Endophytes/metabolism , Microbial Interactions/physiology , Perylene/analogs & derivatives , Plant Diseases/microbiology , Bacillaceae/growth & development , Bacillaceae/metabolism , Bacillus/growth & development , Bacillus/metabolism , Cercospora/genetics , Cercospora/growth & development , Endophytes/genetics , Endophytes/growth & development , Gene Expression Regulation, Fungal , In Vitro Techniques , Perylene/analysis , Perylene/metabolism
8.
J Cancer ; 12(4): 1190-1199, 2021.
Article in English | MEDLINE | ID: mdl-33442417

ABSTRACT

Cadherin is an important cell-cell adhesion molecule, which mediates intercellular adhesion through calcium dependent affinity interaction. Cadherin-11 (CDH11, OB-cadherin) is a member of cadherin family, and its gene is situated on chromosome 16q22.1. Increasing lines of researches have proved that CDH11 plays important roles in the occurrence and development of a lot of diseases, such as tumors, arthritis and so on. CDH11 often leads to promoter methylation inactivation, which can induce cancer cell apoptosis, suppress cell motility and invasion, and can inhibit cancer through Wnt/ß-catenin, AKT/Rho A and NF-κB signaling pathways. This review focused on the current knowledge of CDH11, including its function and mechanism in different diseases. In this article, we aimed to have a more comprehensive and in-depth understanding of CDH11 and to provide new ideas for the treatment of some diseases.

9.
AMB Express ; 10(1): 207, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33236244

ABSTRACT

Salmonella spp. is a high-risk bacterial pathogen that is monitored in imported animal-derived feedstuffs. Serratia fonticola is the bacterial species most frequently confused with Salmonella spp. in traditional identification methods based on biochemical characteristics, which are time-consuming and labor-intensive, and thus unsuitable for daily inspection and quarantine work. In this study, we established a duplex real-time qPCR method with invA- and gyrB-specific primers and probes corresponding to Salmonella spp. and S. fonticola. The method could simultaneously detect both pathogens in imported feedstuffs, with a minimum limit of detection for Salmonella spp. and S. fonticola of 197 copies/µL and 145 copies/µL, respectively (correlation coefficient R2 = 0.999 in both cases). The amplification efficiency for Salmonella spp. and S. fonticola was 98.346% and 96.49%, respectively. Detection of fishmeal was consistent with method GB/T 13091-2018, and all seven artificially contaminated imported feed samples were positively identified. Thus, the developed duplex real-time qPCR assay displays high specificity and sensitivity, and can be used for the rapid and accurate detection of genomic DNA from Salmonella spp. and S. fonticola within hours. This represents a significant improvement in the efficiency of detection of both pathogens in imported feedstuffs.

10.
J Anal Methods Chem ; 2016: 9241860, 2016.
Article in English | MEDLINE | ID: mdl-28058132

ABSTRACT

The existing assays for detecting brevetoxin (BTX) depend on expensive equipment with a professional operator or on an antibody with limited stability, which requires complex processes, a high cost, and a considerable amount of time. The development of an alternative detection probe is another promising research direction. This paper reports the use of aptamers binding to BTX-2 in an analytical assay using the systematic evolution of ligands by exponential enrichment (SELEX). After 12 rounds of selection, the secondary structures of 25 sequences were predicted. Compared to other aptamers, Bap5 has relatively high affinity with the lowest dissociation constant of 4.83 µM, and IC50 is 73.81 ng mL-1. A good linear regression formula of y = 30.688x - 7.329 with a coefficient correlation of R2 = 0.9798 was obtained using a biotin-avidin ELISA. Moreover, there is no cross-reaction with the detected marine toxins, except for BTX-2. Thus, Bap5 has potential to detect BTX-2 in shellfish in the future as a substitute for the recognition probe.

11.
Anal Biochem ; 422(2): 59-65, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22266294

ABSTRACT

A lateral flow immunochromatographic (LFIC) test strip based on a colloidal gold-monoclonal antibody (McAb) conjugate was developed for on-site rapid detection of okadaic acid (OA) in shellfish. It applies a competitive format using an immobilized toxin conjugate and free toxin present in samples. The McAb against OA was conjugated with 20-nm colloidal gold as detector reagent. The toxin in the sample competed with the immobilized toxin to bind to the gold conjugated with McAb. The colloidal gold/McAb/toxin mobile complex was not captured by OA-bovine serum albumin (BSA) on the test line, but it was captured by goat anti-mouse immunoglobulin G (IgG) on the control line. The color density of the test line correlated with the concentration of toxin in the range of 10-50 ng ml(-1). The qualitative detection limit of 150 µg kg(-1) sample was close to the European Union (EU) regulatory limit (160 µg kg(-1)). Therefore, these strips were able to directly and qualitatively estimate the consuming safety of shellfish. They require no equipment because of available visual results, and they screened numerous samples within 10 min. The results were further confirmed by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). As a food safety screening tool, the test strips are convenient and useful to rapidly on-site test the presence of OA in shellfish products.


Subject(s)
Carcinogens/analysis , Chromatography, Affinity/methods , Food Contamination/analysis , Okadaic Acid/analysis , Poisons/analysis , Shellfish/analysis , Animals , Antibodies, Monoclonal , Cattle , Chromatography, Affinity/economics , Chromatography, High Pressure Liquid , Goats , Gold Colloid , Limit of Detection , Mice , Serum Albumin, Bovine , Tandem Mass Spectrometry
12.
Environ Sci Pollut Res Int ; 19(7): 2619-26, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22828889

ABSTRACT

BACKGROUND, AIM, AND SCOPE: Okadaic acid (OA) and analogues of dinophysistoxin (DTX) are key diarrheic shellfish poisoning (DSP) toxins, which possibly arouse DSP symptoms by consuming the contaminated shellfish. Because of the stable toxicity in high temperature and the long-term carcinogenicity, the outbreaks of DSP related to consumption of bivalve mollusks contaminated by DSP toxins pose a hazard to public health. Therefore, it is worth developing a fast and reliable analytical method for the detection of OA and analogues in shellfish. In this paper, an indirect competitive enzyme-linked immunosorbent assay (ELISA) (icELISA) for detecting OA and DTX-1 in seafood was developed based on monoclonal antibody (McAb). METHODS: The OA was conjugated to human immunoglobulin G (IgG) and bovine serum albumin (BSA) by the active ester method as the immune antigen and the detective antigen. The spleen cells from BALB/c mice immunized with OA-IgG were fused with SP2/0 myeloma cells. A hybridoma cell line, which secreted McAb against OA, was selected by "limiting dilution" cloning. An icELISA was developed based on immobilized conjugate (OA-BSA) competing the McAb with the free OA in seafood sample. RESULTS: A hybridoma cell line, which secreted IgG1 subclass monoclonal antibody (McAb) against OA, was selected. The IC(50) of the McAb for OA and dinophytoxin-1 (DTX-1) were 4.40 and 3.89 ng/mL, respectively. Based on the McAb, an indirect competitive ELISA for detection of OA and DTX-1 in seafood was developed. The regression equation was y = 54.713x - 25.879 with a coefficient correlation of R (2) = 0.9729. The linear range and the limit of detection were 0.4-12.5 and 0.45 ng/mL, respectively. The average recovery of OA and DTX-1 spiked shellfish was 82.29% with the coefficient of variation of 7.67%. CONCLUSION: The developed icELISA is a fast, sensitive, and convenient assay for detecting of total amount of OA and DTX-1 in seafood.


Subject(s)
Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay/methods , Okadaic Acid/chemistry , Pyrans/chemistry , Seafood/analysis , Animals , Cell Line , Food Analysis/methods , Humans , Mice , Mice, Inbred BALB C , Protein Binding , Serum Albumin, Bovine , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...