Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta ; 1832(1): 285-91, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22617145

ABSTRACT

A number of genes responsible for hearing loss are related to ion recycling and homeostasis in the inner ear. Connexins (Cx26 encoded by GJB2, Cx31 encoded by GJB3 and Cx30 encoded by GJB6) are core components of gap junctions in the inner ear. Gap junctions are intercellular communication channels and important factors that are associated with hearing loss. To date, a molecular genetics study of GJB3 and GJB6 as a causative gene for hearing loss has not been performed in Korea. This study was therefore performed to elucidate the genetic characteristics of Korean patients with nonsyndromic sensorineural hearing loss and to determine the pathological mechanism of hearing loss by analyzing the intercellular communication function of Cx30 and Cx31 variants. Sequencing analysis of the GJB3 and GJB6 genes in our population revealed a total of nine variants, including four novel variants in the two genes. Three of the novel variants (Cx31-p.V27M, Cx31-p.V43M and Cx-30-p.I248V) and two previously reported variants (Cx31-p.V84I and Cx30-p.A40V) were selected for functional studies using a pathogenicity prediction program and assessed for whether the mutations were located in a conserved region of the protein. The results of biochemical and ionic coupling tests showed that both the Cx31-p.V27M and Cx31-p.V84I variants did not function normally when each was expressed as a heterozygote with the wild-type Cx31. This study demonstrated that two variants of Cx31 were pathogenic mutations with deleterious effect. This information will be valuable in understanding the pathogenic role of GJB3 and GJB6 mutations associated with hearing loss.


Subject(s)
Connexins/genetics , Genetic Variation , Hearing Loss, Sensorineural/genetics , Calcium/metabolism , Connexin 26 , Connexin 30 , Connexins/metabolism , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Humans , Mutation, Missense
2.
J Korean Neurosurg Soc ; 52(4): 281-7, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23133713

ABSTRACT

OBJECTIVE: To evaluate the effect of calcium supplementation on spinal bone fusion in ovariectomized (OVX) rats. METHODS: Sixteen female Sprague Dawley rats underwent bilateral ovariectomy at 12 weeks of age to induce osteoporosis and were randomly assigned to two groups : control group (n=8) and calcium-supplemented group (OVX-Ca, n=8). Autologous spinal bone fusion surgery was performed on both groups 8 weeks later. After fusion surgery, the OVX-Ca group was supplemented with calcium in drinking water for 8 weeks. Blood was obtained 4 and 8 weeks after fusion surgery. Eight weeks after fusion surgery, the rats were euthanized and the L4-5 spine removed. Bone fusion status and fusion volume were evaluated by manual palpation and three-dimensional computed tomography. RESULTS: The mean fusion volume in the L4-5 spine was significantly greater in the OVX-Ca group (71.80±8.06 mm(3)) than in controls (35.34±8.24 mm(3)) (p<0.01). The level of osteocalcin, a bone formation marker, was higher in OVX-Ca rats than in controls 4 weeks (610.08±10.41 vs. 551.61±12.34 ng/mL) and 8 weeks (552.05±19.67 vs. 502.98±22.76 ng/mL) after fusion surgery (p<0.05). The level of C-terminal telopeptide fragment of type I collagen, a bone resorption marker, was significantly lower in OVX-Ca rats than in controls 4 weeks (77.07±12.57 vs. 101.75±7.20 ng/mL) and 8 weeks (69.58±2.45 vs. 77.15±4.10 ng/mL) after fusion surgery (p<0.05). A mechanical strength test showed that the L4-5 vertebrae in the OVX-Ca group withstood a 50% higher maximal load compared with the controls (p<0.01). CONCLUSION: Dietary calcium given to OVX rats after lumbar fusion surgery improved fusion volume and mechanical strength in an ovariectomized rat model.

3.
J Korean Neurosurg Soc ; 51(6): 323-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22949959

ABSTRACT

OBJECTIVE: The purpose of this study was to verify the appropriateness of ovariectomized rats as the osteoporosis animal model. METHODS: Twelve female Sprague-Dawley rats underwent a sham operation (the sham group) or bilateral ovariectomy [the ovariectomy (OVX) group]. Eight weeks after operations, serum biochemical markers of bone turnover were analyzed; osteocalcin and alkaline phosphatase, which are sensitive biochemical markers of bone formation, and C-terminal telopeptide fragment of type I collagen C-terminus (CTX), which is a sensitive biochemical marker of bone resorption. Bone histomorphometric parameters and microarchitectural properties of 4th lumbar vertebrae were determined by micro-computed tomographic (CT) scan. RESULTS: The OVX group showed on average 75.4% higher osteocalcin and 72.5% higher CTX levels than the sham group, indicating increased bone turnover. Micro-CT analysis showed significantly lower bone mineral density (BMD) (p=0.005) and cortical BMD (p=0.021) in the OVX group. Furthermore, the OVX group was found to have a significantly lower trabecular bone volume fraction (p=0.002). CONCLUSION: Our results showed that bone turnover was significantly increased and bone mass was significantly decreased 8 weeks after ovariectomy in rats. Thus, we propose that the ovariectomized rat model be considered a reproducible and reliable model of osteoporosis.

4.
J Korean Neurosurg Soc ; 52(1): 1-6, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22993670

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate the different patterns of bone loss between the lumbar spine and the femur after ovariectomy in rats. METHODS: Twenty-four female Sprague-Dawley rats underwent a sham operation (the sham group) or bilateral ovariectomy (the ovariectomized group). Four and eight weeks after operation, six rats from each of the two groups were euthanized. Serum biochemical markers of bone turnover including osteocalcin and alkaline phosphatase (ALP), which are sensitive biochemical markers of bone formation, and the telopeptide fragment of type I collagen C-terminus (CTX), which is a sensitive biochemical marker of bone resorption, were analyzed. Bone histomorphometric parameters of the 4th lumbar vertebrae and femur were determined by micro-computed tomography. RESULTS: Ovariectomized rats were found to have higher osteocalcin, ALP and CTX levels than sham controls. Additionally, 8 weeks after ovariectomy in the OVX group, serum levels of osteocalcin, ALP and CTX were significantly higher than those of 4 weeks after ovariectomy. Bone loss after ovariectomy was more extensive in the 4th lumbar spine compared to the femur. Bone loss in the 4th lumbar spine was mainly caused by trabecular thinning, but in the femur, it was mainly caused by trabecular elimination. CONCLUSION: The present study demonstrates different patterns of bone loss between the 4th lumbar spine and the femur in ovariectomized rats. Therefore, when considering animal models of osteoporosis, it is important that bone sites should be taken into account.

5.
Acta Histochem Cytochem ; 45(3): 201-10, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22829714

ABSTRACT

The calcium-binding protein parvalbumin (PV) occurs in the retinal ganglion cells (RGCs) of various vertebrate species. In the present study, we aimed to identify the types of PV-containing RGCs that project to the superior colliculus (SC) in the mouse. We injected retrograde tracer dextran into the mouse SC to label RGCs. PV-containing RGCs were first identified by immunocytochemistry and then neurons double-labeled with dextran and PV were iontophoretically injected with a lipophilic dye, DiI. Subsequently, confocal microscopy was used to characterize the morphologic classification of the PV-immunoreactive (IR) retinotectal ganglion cells on the basis of dendritic field size, branching pattern, and stratification within the inner plexiform layer. Among the 8 different types of PV-containing RGCs in the mouse retina, we found all 8 types of RGCs projecting to the SC. The RGCs were heterogeneous in morphology. The combined approach of using tracer injection and a single cell injection after immunocytochemistry on a particular protein will provide valuable data to further understand the functional features of the RGCs which constitute the retinotectal pathway.

6.
J Korean Neurosurg Soc ; 51(4): 191-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22737297

ABSTRACT

OBJECTIVE: Valproic acid (VPA), as known as histone deacetylase inhibitor, has neuroprotective effects. This study investigated the histological changes and functional recovery from spinal cord injury (SCI) associated with VPA treatment in a rat model. METHODS: Locomotor function was assessed according to the Basso-Beattie-Bresnahan scale for 2 weeks in rats after receiving twice daily intraperitoneal injections of 200 mg/kg VPA or the equivalent volume of normal saline for 7 days following SCI. The injured spinal cord was then examined histologically, including quantification of cavitation. RESULTS: Basso-Beattie-Bresnahan scale scores in rats receiving VPA were significantly higher than in the saline group (p<0.05). The cavity volume in the VPA group was significantly reduced compared with the control (saline-injected) group (p<0.05). The level of histone acetylation recovered in the VPA group, while it was significantly decreased in the control rats (p<0.05). The macrophage level was significantly decreased in the VPA group (p<0.05). CONCLUSION: VPA influences the restoration of hyperacetylation and reduction of the inflammatory reaction resulting from SCI, and is effective for histology and motor function recovery.

7.
Acta Histochem Cytochem ; 44(5): 213-21, 2011 Oct 26.
Article in English | MEDLINE | ID: mdl-22096261

ABSTRACT

Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs.

8.
Zoolog Sci ; 28(9): 694-702, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21882959

ABSTRACT

Although the dog is widely used to analyze the function of the brain, it is not known whether the distribution of calcium-binding proteins reflects a specific pattern in the visual cortex. The distribution of neurons containing calcium-binding proteins, calbindin D28K, calretinin, and parvalbumin in adult dog visual cortex were studied using immunocytochemistry. We also compared this labeling to that of gamma-aminobutyric acid (GABA). Calbindin D28K-immunoreactive (IR) neurons were predominantly located in layer II/III. Calretinin- and parvalbumin-IR neurons were located throughout the layers with the highest density in layers II/III and IV. The large majority of calbindin D28K-IR neurons were multipolar stellate cells. The majority of the calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicular to the pial surface. And the large majority of parvalbumin-IR neurons were multipolar stellate and round/oval cells. More than 90% of the calretinin- and parvalbumin-IR neurons were double-labeled with GABA, while approximately 66% of the calbindin D28K-IR neurons contained GABA. This study elucidates the neurochemical structure of calcium-binding proteins. These data will be informative in appreciating the functional significance of different laminar distributions of calcium-binding proteins between species and the differential vulnerability of calcium-binding proteins-containing neurons, with regard to calcium-dependent excitotoxic procedures.


Subject(s)
Dogs/metabolism , Neurons/metabolism , Parvalbumins/metabolism , S100 Calcium Binding Protein G/metabolism , Visual Cortex/cytology , Animals , Calbindin 2 , Calbindins , Gene Expression Regulation/physiology , Immunohistochemistry , Parvalbumins/genetics , S100 Calcium Binding Protein G/genetics , Visual Cortex/metabolism
9.
Neurosci Res ; 71(2): 124-33, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21784111

ABSTRACT

The purpose of the present study is to identify the dopaminergic amacrine (DA) cells in the inner nuclear layer (INL) of zebrafish retina through immunocytochemistry and quantitative analysis. Two types of tyrosine hydroxylase-immunoreactive (TH-IR) cells appeared on the basis of dendritic morphology and stratification patterns in the inner plexiform layer (IPL). The first (DA1) was bistratified, with branching planes in both s1 and s5 of the IPL. The second (DA2) was diffuse, with dendritic processes branched throughout the IPL. DA1 and DA2 cells corresponded morphologically to A(on)(-s1/s5) and A(diffuse)(-1) (Connaughton et al., 2004). The average number of total TH-IR cells was 1088±79cells per retina (n=5), and the mean density was 250±27cells/mm(2). Their density was highest in the mid central region of ventrotemporal retina and lowest in the periphery of dorsonasal retina. Quantitatively, 45.71% of the TH-IR cells were DA1 cells, while 54.29% were DA2 cells. No TH-IR cells expressed calbindin D28K, calretinin or parvalbumin, markers for the various INL cells present in several animals. Therefore the TH-IR cells in zebrafish are limited to very specific subpopulations of the amacrine cells.


Subject(s)
Amacrine Cells/enzymology , Neurons/enzymology , Retina/enzymology , Tyrosine 3-Monooxygenase/metabolism , Amacrine Cells/classification , Animals , Immunohistochemistry , Retina/cytology , Tyrosine 3-Monooxygenase/chemistry , Tyrosine 3-Monooxygenase/classification , Zebrafish
10.
Acta Histochem Cytochem ; 43(6): 123-30, 2010 Dec 29.
Article in English | MEDLINE | ID: mdl-21245978

ABSTRACT

Adipose derived stromal cells (ADSCs) were transplanted into a developing mouse eye to investigate the influence of a developing host micro environment on integration and differentiation. Green fluorescent protein-expressing ADSCs were transplanted by intraocular injections. The age of the mouse was in the range of 1 to 10 days postnatal (PN). Survival dates ranged from 7 to 28 post transplantation (DPT), at which time immunohistochemistry was performed. The transplanted ADSCs displayed some morphological differentiations in the host eye. Some cells expressed microtubule associated protein 2 (marker for mature neuron), or glial fibrillary acid protein (marker for glial cell). In addition, some cells integrated into the ganglion cell layer. The integration and differentiation of the transplanted ADSCs in the 5 and 10 PN 7 DPT were better than in the host eye the other age ranges. This study was aimed at demonstrating how the age of host micro environment would influence the differentiation and integration of the transplanted ADSCs. However, it was found that the integration and differentiation into the developing retina were very limited when compared with other stem cells, such as murine brain progenitor cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...