Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(17): eadd8868, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37115933

ABSTRACT

Landforms on the Martian surface are critical to understanding the nature of surface processes in the recent past. However, modern hydroclimatic conditions on Mars remain enigmatic, as explanations for the formation of observed landforms are ambiguous. We report crusts, cracks, aggregates, and bright polygonal ridges on the surfaces of hydrated salt-rich dunes of southern Utopia Planitia (~25°N) from in situ exploration by the Zhurong rover. These surface features were inferred to form after 1.4 to 0.4 million years ago. Wind and CO2 frost processes can be ruled out as potential mechanisms. Instead, involvement of saline water from thawed frost/snow is the most likely cause. This discovery sheds light on more humid conditions of the modern Martian climate and provides critical clues to future exploration missions searching for signs of extant life, particularly at low latitudes with comparatively warmer, more amenable surface temperatures.

2.
Nat Commun ; 13(1): 3119, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35701397

ABSTRACT

The distribution range, time-varying characteristics, and sources of lunar water are still controversial. Here we show the Chang'E-5 in-situ spectral observations of lunar water under Earth's magnetosphere shielding and relatively high temperatures. Our results show the hydroxyl contents of lunar soils in Chang'E-5 landing site are with a mean value of 28.5 ppm, which is on the weak end of lunar hydration features. This is consistent with the predictions from remote sensing and ground-based telescopic data. Laboratory analysis of the Chang'E-5 returned samples also provide critical clues to the possible sources of these hydroxyl contents. Much less agglutinate glass contents suggest a weak contribution of solar wind implantation. Besides, the apatite present in the samples can provide hydroxyl contents in the range of 0 to 179 ± 13 ppm, which shows compelling evidence that, the hydroxyl-containing apatite may be an important source for the excess hydroxyl observed at this young mare region.

SELECTION OF CITATIONS
SEARCH DETAIL
...