Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 34(6): 991-1003, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-29036083

ABSTRACT

This paper presents a digital zooming method using a super-resolution (SR) algorithm based on the local self-similarity between the wide- and tele-view images acquired by an asymmetric dual camera system. The proposed SR algorithm consists of four steps: (i) registration of an optically zoomed image to the wide-view image, (ii) restoration of the central region of the zoomed wide-view image, (iii) restoration of the boundary region of the zoomed wide-view image, and (iv) fusion of the results from steps (ii) and (iii). Since an asymmetric dual camera system acquires different-resolution images on the same scene due to the different optical specifications, the proposed method can restore the low-resolution wide-view image using the ideal high-frequency component estimated from the optically zoomed image. Experimental results demonstrate that the proposed method can provide significantly improved high-resolution wide-view images compared to existing single-image-based SR methods.

2.
Sensors (Basel) ; 15(9): 22826-53, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26378532

ABSTRACT

In very high-resolution (VHR) push-broom-type satellite sensor data, both destriping and denoising methods have become chronic problems and attracted major research advances in the remote sensing fields. Since the estimation of the original image from a noisy input is an ill-posed problem, a simple noise removal algorithm cannot preserve the radiometric integrity of satellite data. To solve these problems, we present a novel method to correct VHR data acquired by a push-broom-type sensor by combining wavelet-Fourier and multiscale non-local means (NLM) filters. After the wavelet-Fourier filter separates the stripe noise from the mixed noise in the wavelet low- and selected high-frequency sub-bands, random noise is removed using the multiscale NLM filter in both low- and high-frequency sub-bands without loss of image detail. The performance of the proposed method is compared to various existing methods on a set of push-broom-type sensor data acquired by Korean Multi-Purpose Satellite 3 (KOMPSAT-3) with severe stripe and random noise, and the results of the proposed method show significantly improved enhancement results over existing state-of-the-art methods in terms of both qualitative and quantitative assessments.

3.
Sensors (Basel) ; 15(5): 12053-79, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26007744

ABSTRACT

In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures.

4.
J Opt Soc Am A Opt Image Sci Vis ; 32(12): 2264-75, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26831381

ABSTRACT

This paper presents a regularized superresolution (SR) reconstruction method using locally adaptive multiple linear regression to overcome the limitation of spatial resolution of digital images. In order to make the SR problem better-posed, the proposed method incorporates the locally adaptive multiple linear regression into the regularization process as a local prior. The local regularization prior assumes that the target high-resolution (HR) pixel is generated by a linear combination of similar pixels in differently scaled patches and optimum weight parameters. In addition, we adapt a modified version of the nonlocal means filter as a smoothness prior to utilize the patch redundancy. Experimental results show that the proposed algorithm better restores HR images than existing state-of-the-art methods in the sense of the most objective measures in the literature.

5.
Springerplus ; 3: 713, 2014.
Article in English | MEDLINE | ID: mdl-26034694

ABSTRACT

This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...