Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Food Res Int ; 190: 114584, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945604

ABSTRACT

Levilactobacillus brevis is crucial in food fermentation, particularly in sourdough production. However, the cultivation of L. brevis faces a challenge with accumulation of lactic acid, a major inhibitor. We aimed to increase the acid tolerance of L. brevis, an industrial strain for sourdough fermentation. We used the adaptive laboratory evolution (ALE) to obtain lactic acid tolerant strains. The evolved strain's fermentation and metabolite profiles, alongside sensory evaluation, were compared with the parental strain by using various analytical techniques. The ALE approach increased lactic acid tolerance in the evolved strain showing an increased growth rate by 1.1 and 1.9 times higher than the parental strain at pH 4.1 and 6.5, respectively. Comprehensive analyses demonstrated its potential application in sourdough fermentation, promising reduced downstream costs. The evolved strain, free from genetically modified organisms concerns, has great potential for industrial use by exhibiting enhanced growth in acidic conditions without affecting consumers' bread preferences.


Subject(s)
Bread , Fermentation , Food Microbiology , Lactic Acid , Levilactobacillus brevis , Bread/microbiology , Levilactobacillus brevis/metabolism , Levilactobacillus brevis/growth & development , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Taste , Humans
2.
Appl Microbiol Biotechnol ; 107(24): 7427-7438, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37812254

ABSTRACT

A novel metabolic pathway of 3,6-anhydro-L-galactose (L-AHG), the main sugar component in red macroalgae, was first discovered in the marine bacterium Vibrio sp. EJY3. L-AHG is converted to 2-keto-3-deoxy-galactonate (KDGal) in two metabolic steps. Here, we identified the enantiomeric nature of KDGal in the L-AHG catabolic pathway via stereospecific enzymatic reactions accompanying the biosynthesis of enantiopure L-KDGal and D-KDGal. Enantiopure L-KDGal and D-KDGal were synthesized by enzymatic reactions derived from the fungal galacturonate and bacterial oxidative galactose pathways, respectively. KDGal, which is involved in the L-AHG pathway, was also prepared. The results obtained from the reactions with an L-KDGal aldolase, specifically acting on L-KDGal, showed that KDGal in the L-AHG pathway exists in an L-enantiomeric form. Notably, we demonstrated the utilization of L-KDGal by Escherichia coli for the first time. E. coli cannot utilize L-KDGal as the sole carbon source. However, when a mixture of L-KDGal and D-galacturonate was used, E. coli utilized both. Our study suggests a stereoselective method to determine the absolute configuration of a compound. In addition, our results can be used to explore the novel L-KDGal catabolic pathway in E. coli and to construct an engineered microbial platform that assimilates L-AHG or L-KDGal as substrates. KEY POINTS: • Stereospecific enzyme reactions were used to identify enantiomeric nature of KDGal • KDGal in the L-AHG catabolic pathway exists in an L-enantiomeric form • E. coli can utilize L-KDGal as a carbon source when supplied with D-galacturonate.


Subject(s)
Galactose , Seaweed , Galactose/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Networks and Pathways , Seaweed/metabolism , Carbon
3.
Microb Cell Fact ; 21(1): 204, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36207743

ABSTRACT

BACKGROUND: Saccharomyces boulardii is a probiotic yeast that exhibits antimicrobial and anti-toxin activities. Although S. boulardii has been clinically used for decades to treat gastrointestinal disorders, several studies have reported weak or no beneficial effects of S. boulardii administration in some cases. These conflicting results of S. boulardii efficacity may be due to nutrient deficiencies in the intestine that make it difficult for S. boulardii to maintain its metabolic activity. RESULTS: To enable S. boulardii to overcome any nutritional deficiencies in the intestine, we constructed a S. boulardii strain that could metabolize L-fucose, a major component of mucin in the gut epithelium. The fucU, fucI, fucK, and fucA from Escherichia coli and HXT4 from S. cerevisiae were overexpressed in S. boulardii. The engineered S. boulardii metabolized L-fucose and produced 1,2-propanediol under aerobic and anaerobic conditions. It also produced large amounts of 1,2-propanediol under strict anaerobic conditions. An in silico genome-scale metabolic model analysis was performed to simulate the growth of S. boulardii on L-fucose, and elementary flux modes were calculated to identify critical metabolic reactions for assimilating L-fucose. As a result, we found that the engineered S. boulardii consumes L-fucose via (S)-lactaldehyde-(S)-lactate-pyruvate pathway, which is highly oxygen dependent. CONCLUSION: To the best of our knowledge, this is the first study in which S. cerevisiae and S. boulardii strains capable of metabolizing L-fucose have been constructed. This strategy could be used to enhance the metabolic activity of S. boulardii and other probiotic microorganisms in the gut.


Subject(s)
Probiotics , Saccharomyces boulardii , Animals , Escherichia coli , Fucose/metabolism , Lactates/metabolism , Mammals , Metabolic Flux Analysis , Mucins/metabolism , Oxygen/metabolism , Probiotics/metabolism , Propylene Glycol/metabolism , Pyruvates/metabolism , Saccharomyces boulardii/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
4.
Mar Drugs ; 20(5)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35621939

ABSTRACT

2-keto-3-deoxy sugar acids, which have potential as precursors in medicinal compound production, have gained attention in various fields. Among these acids, 2-keto-3-deoxy-l-galactonate (KDGal) has been biologically produced from D-galacturonate originating from plant-derived pectin. KDGal is also found in the catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red-algae-derived agarose. AHG is converted to 3,6-anhydrogalactonate by AHG dehydrogenase and subsequently isomerized to KDGal by 3,6-anhydrogalactonate cycloisomerase. Therefore, we used the above-described pathway to produce KDGal from agarose. Agarose was depolymerized to AHG and to agarotriose (AgaDP3) and agaropentaose (AgaDP5), both of which have significantly higher molecular weights than AHG. When only AHG was converted to KDGal, AgaDP3 and AgaDP5 remained unreacted. Finally, KDGal was effectively purified from the enzymatic products by size-exclusion chromatography based on the differences in molecular weights. These results show that KDGal can be enzymatically produced and purified from agarose for use as a precursor to high-value products.


Subject(s)
Rhodophyta , Seaweed , Galactose/chemistry , Pectins , Rhodophyta/chemistry , Seaweed/chemistry , Sepharose/chemistry
5.
Cell Genom ; 2(12): 100213, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36778052

ABSTRACT

The phylum Actinobacteria includes important human pathogens like Mycobacterium tuberculosis and Corynebacterium diphtheriae and renowned producers of secondary metabolites of commercial interest, yet only a small part of its diversity is represented by sequenced genomes. Here, we present 824 actinobacterial isolate genomes in the context of a phylum-wide analysis of 6,700 genomes including public isolates and metagenome-assembled genomes (MAGs). We estimate that only 30%-50% of projected actinobacterial phylogenetic diversity possesses genomic representation via isolates and MAGs. A comparison of gene functions reveals novel determinants of host-microbe interaction as well as environment-specific adaptations such as potential antimicrobial peptides. We identify plasmids and prophages across isolates and uncover extensive prophage diversity structured mainly by host taxonomy. Analysis of >80,000 biosynthetic gene clusters reveals that horizontal gene transfer and gene loss shape secondary metabolite repertoire across taxa. Our observations illustrate the essential role of and need for high-quality isolate genome sequences.

6.
Microb Cell Fact ; 20(1): 160, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34407819

ABSTRACT

BACKGROUND: Saccharomyces cerevisiae var. boulardii is a representative probiotic yeast that has been widely used in the food and pharmaceutical industries. However, S. boulardii has not been studied as a microbial cell factory for producing useful substances. Agarose, a major component of red macroalgae, can be depolymerized into neoagarooligosaccharides (NAOSs) by an endo-type ß-agarase. NAOSs, including neoagarotetraose (NeoDP4), are known to be health-benefiting substances owing to their prebiotic effect. Thus, NAOS production in the gut is required. In this study, the probiotic yeast S. boulardii was engineered to produce NAOSs by expressing an endo-type ß-agarase, BpGH16A, derived from a human gut bacterium Bacteroides plebeius. RESULTS: In total, four different signal peptides were compared in S. boulardii for protein (BpGH16A) secretion for the first time. The SED1 signal peptide derived from Saccharomyces cerevisiae was selected as optimal for extracellular production of NeoDP4 from agarose. Expression of BpGH16A was performed in two ways using the plasmid vector system and the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system. The production of NeoDP4 by engineered S. boulardii was verified and quantified. NeoDP4 was produced by S. boulardii engineered using the plasmid vector system and CRISPR-Cas9 at 1.86 and 0.80 g/L in a 72-h fermentation, respectively. CONCLUSIONS: This is the first report on NAOS production using the probiotic yeast S. boulardii. Our results suggest that S. boulardii can be considered a microbial cell factory to produce health-beneficial substances in the human gut.


Subject(s)
Metabolic Engineering/methods , Oligosaccharides/biosynthesis , Probiotics/metabolism , Saccharomyces boulardii/metabolism , Bacteroides/genetics , Fermentation , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Humans , Oligosaccharides/chemistry , Oligosaccharides/genetics , Saccharomyces boulardii/genetics , Saccharomyces cerevisiae/classification , Sepharose/metabolism
7.
Sci Rep ; 11(1): 13955, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230500

ABSTRACT

Various health beneficial outcomes associated with red seaweeds, especially their polysaccharides, have been claimed, but the molecular pathway of how red seaweed polysaccharides are degraded and utilized by cooperative actions of human gut bacteria has not been elucidated. Here, we investigated the enzymatic and metabolic cooperation between two human gut symbionts, Bacteroides plebeius and Bifidobacterium longum ssp. infantis, with regard to the degradation of agarose, the main carbohydrate of red seaweed. More specifically, B. plebeius initially decomposed agarose into agarotriose by the actions of the enzymes belonging to glycoside hydrolase (GH) families 16 and 117 (i.e., BpGH16A and BpGH117) located in the polysaccharide utilization locus, a specific gene cluster for red seaweed carbohydrates. Then, B. infantis extracted energy from agarotriose by the actions of two agarolytic ß-galactosidases (i.e., Bga42A and Bga2A) and produced neoagarobiose. B. plebeius ultimately acted on neoagarobiose by BpGH117, resulting in the production of 3,6-anhydro-L-galactose, a monomeric sugar possessing anti-inflammatory activity. Our discovery of the cooperative actions of the two human gut symbionts on agarose degradation and the identification of the related enzyme genes and metabolic intermediates generated during the metabolic processes provide a molecular basis for agarose degradation by gut bacteria.


Subject(s)
Bacteroides/metabolism , Bifidobacterium longum subspecies infantis/metabolism , Gastrointestinal Microbiome , Seaweed/enzymology , Seaweed/metabolism , Sepharose/metabolism , Bacteroides/enzymology , Humans , Probiotics/metabolism , beta-Galactosidase/metabolism
8.
Mar Drugs ; 19(5)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068166

ABSTRACT

α-Neoagarobiose (NAB)/neoagarooligosaccharide (NAO) hydrolase plays an important role as an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase in agarose utilization. Agarose is an abundant polysaccharide found in red seaweeds, comprising 3,6-anhydro-L-galactose (AHG) and D-galactose residues. Unlike agarose degradation, which has been reported in marine microbes, recent metagenomic analysis of Bacteroides plebeius, a human gut bacterium, revealed the presence of genes encoding enzymes involved in agarose degradation, including α-NAB/NAO hydrolase. Among the agarolytic enzymes, BpGH117 has been partially characterized. Here, we characterized the exo-acting α-NAB/NAO hydrolase BpGH117, originating from B. plebeius. The optimal temperature and pH for His-tagged BpGH117 activity were 35 °C and 9.0, respectively, indicative of its unique origin. His-tagged BpGH117 was thermostable up to 35 °C, and the enzyme activity was maintained at 80% of the initial activity at a pre-incubation temperature of 40 °C for 120 min. Km and Vmax values for NAB were 30.22 mM and 54.84 U/mg, respectively, and kcat/Km was 2.65 s-1 mM-1. These results suggest that His-tagged BpGH117 can be used for producing bioactive products such as AHG and agarotriose from agarose efficiently.


Subject(s)
Bacteroides/enzymology , Disaccharidases/biosynthesis , Disaccharidases/chemistry , Disaccharides/metabolism , Edetic Acid/pharmacology , Enzyme Assays , Escherichia coli/genetics , Galactosides/metabolism , Humans , Hydrogen-Ion Concentration , Ions/pharmacology , Kinetics , Oligosaccharides/metabolism , Protein Stability , Sequence Analysis, Protein , Temperature
9.
Mar Drugs ; 19(4)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921308

ABSTRACT

Numerous health benefits of diets containing red seaweeds or agar-derived sugar mixtures produced by enzymatic or acid hydrolysis of agar have been reported. However, among various agar-derived sugars, the key components that confer health-beneficial effects, such as prebiotic and anti-colon cancer activities, remain unclear. Here, we prepared various agar-derived sugars by multiple enzymatic reactions using an endo-type and an exo-type of ß-agarase and a neoagarobiose hydrolase and tested their in vitro prebiotic and anti-colon cancer activities. Among various agar-derived sugars, agarotriose exhibited prebiotic activity that was verified based on the fermentability of agarotriose by probiotic bifidobacteria. Furthermore, we demonstrated the anti-colon cancer activity of 3,6-anhydro-l-galactose, which significantly inhibited the proliferation of human colon cancer cells and induced their apoptosis. Our results provide crucial information regarding the key compounds derived from red seaweeds that confer beneficial health effects, including prebiotic and anti-colon cancer activities, to the host.


Subject(s)
Agar/metabolism , Antineoplastic Agents/pharmacology , Bifidobacterium/metabolism , Colonic Neoplasms/drug therapy , Galactose/analogs & derivatives , Prebiotics , Rhodophyta/metabolism , Seaweed/metabolism , Antineoplastic Agents/isolation & purification , Apoptosis/drug effects , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Fermentation , Galactose/isolation & purification , Galactose/pharmacology , HCT116 Cells , Humans , Hydrolysis
10.
Appl Microbiol Biotechnol ; 105(2): 617-625, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33404831

ABSTRACT

Seaweeds have received considerable attention as sources of dietary fiber and biomass for manufacturing valuable products. The major polysaccharides of red seaweeds include agar and porphyran. In a marine environment, marine bacteria utilize agar and porphyran through the agarase and porphyranase genes encoded in their genomes. Most of these enzymes identified and characterized so far originate from marine bacteria. Recently, Bacteroides plebeius, a human gut bacterium isolated from seaweed-eating Japanese individuals, was revealed to contain a polysaccharide utilization locus (PUL) targeting the porphyran and agarose of red seaweeds. For example, B. plebeius contains an endo-type ß-agarase, BpGH16A, belonging to glycoside hydrolase family 16. BpGH16A cleaves the ß-1,4-glycosidic linkages of agarose and produces neoagarooligosccharides from agarose. Since it is crucial to study the characteristics of BpGH16A to understand the depolymerization pathway of red seaweed polysaccharides by B. plebeius in the human gut and to industrially apply the enzyme for the depolymerization of agar, we characterized BpGH16A for the first time. According to our results, BpGH16A is an extracellular endo-type ß-agarase with an optimal temperature of 40 °C and an optimal pH of 7.0, which correspond to the temperature and pH of the human colon. BpGH16A depolymerizes agarose into neoagarotetraose (as the main product) and neoagarobiose (as the minor product). Thus, BpGH16A is suggested to be an important enzyme that initiates the depolymerization of red seaweed agarose or agar in the human gut by B. plebeius. KEY POINTS: • Bacteroides plebeius is a human gut bacterium isolated from seaweed-eating humans. • BpGH16A is an extracellular endo-type ß-agarase with optimal conditions of 40 °C and pH 7.0. • BpGH16A depolymerizes agarose into neoagarotetraose and neoagarobiose.


Subject(s)
Gastrointestinal Microbiome , Agar , Bacteroides , Glycoside Hydrolases/genetics , Humans , Sepharose
11.
Metab Eng ; 62: 322-329, 2020 11.
Article in English | MEDLINE | ID: mdl-33098975

ABSTRACT

2'-Fucosyllactose (2'-FL), a human milk oligosaccharide with confirmed benefits for infant health, is a promising infant formula ingredient. Although Escherichia coli, Saccharomyces cerevisiae, Corynebacterium glutamicum, and Bacillus subtilis have been engineered to produce 2'-FL, their titers and productivities need be improved for economic production. Glucose along with lactose have been used as substrates for producing 2'-FL, but accumulation of by-products due to overflow metabolism of glucose hampered efficient production of 2'-FL regardless of a host strain. To circumvent this problem, we used xylose, which is the second most abundant sugar in plant cell wall hydrolysates and is metabolized through oxidative metabolism, for the production of 2'-FL by engineered yeast. Specifically, we modified an engineered S. cerevisiae strain capable of assimilating xylose to produce 2'-FL from a mixture of xylose and lactose. First, a lactose transporter (Lac12) from Kluyveromyces lactis was introduced. Second, a heterologous 2'-FL biosynthetic pathway consisting of enzymes Gmd, WcaG, and WbgL from Escherichia coli was introduced. Third, we adjusted expression levels of the heterologous genes to maximize 2'-FL production. The resulting engineered yeast produced 25.5 g/L of 2'-FL with a volumetric productivity of 0.35 g/L∙h in a fed-batch fermentation with lactose and xylose feeding to mitigate the glucose repression. Interestingly, the major location of produced 2'-FL by the engineered yeast can be changed using different culture media. While 72% of the produced 2'-FL was secreted when a complex medium was used, 82% of the produced 2'-FL remained inside the cells when a minimal medium was used. As yeast extract is already used as food and animal feed ingredients, 2'-FL enriched yeast extract can be produced cost-effectively using the 2'-FL-accumulating yeast cells.


Subject(s)
Saccharomyces cerevisiae , Xylose , Fermentation , Humans , Kluyveromyces , Saccharomyces cerevisiae/genetics , Trisaccharides
12.
Appl Environ Microbiol ; 86(6)2020 03 02.
Article in English | MEDLINE | ID: mdl-31924614

ABSTRACT

Vibrio sp. strain EJY3 is an agarolytic marine bacterium that catabolizes 3,6-anhydro-l-galactose (AHG), a monomeric sugar unit of agarose. While the AHG catabolic pathway in EJY3 has been discovered recently, the complete agarolytic system of EJY3 remains unclear. We have identified five enzymes, namely, the ß-agarases VejGH50A, VejGH50B, VejGH50C, and VejGH50D and the α-neoagarooligosaccharide (NAOS) hydrolase VejGH117, involved in the agarolytic system of EJY3. Based on the characterization of recombinant enzymes and intracellular metabolite analysis, we found that EJY3 catabolizes agarose via two different agarolytic pathways. Among the four ß-agarases of EJY3, VejGH50A, VejGH50B, and VejGH50C were found to be extracellular agarases, producing mainly neoagarotetraose (NeoDP4) and neoagarobiose. By detecting intracellular NeoDP4 in EJY3 grown on agarose, NeoDP4 was observed being taken up by cells. Intriguingly, intracellular NeoDP4 acted as a branching point for the two different downstream agarolytic pathways. First, via the well-known agarolytic pathway, NeoDP4 was depolymerized into monomeric sugars by the exo-type ß-agarase VejGH50D and the α-NAOS hydrolase VejGH117. Second, via the newly found alternative agarolytic pathway, NeoDP4 was depolymerized into AHG and agarotriose (AgaDP3) by VejGH117, and AgaDP3 then was completely depolymerized into monomeric sugars by sequential reactions of the agarolytic ß-galactosidases (ABG) VejABG and VejGH117. Therefore, by experimentally verifying agarolytic enzymatic activity and transport of NeoDP4 into EJY3 cells, we revealed that EJY3 possesses both the known pathway and the newly discovered alternative pathway that involves α-NAOS hydrolase and ABG.IMPORTANCE Agarose is the main polysaccharide of red macroalgae and is composed of galactose and 3,6-anhydro-l-galactose. Many marine bacteria possess enzymes capable of depolymerizing agarose into oligomers and then depolymerizing the oligomers into monomers. Here, we experimentally verified that both a well-known agarolytic pathway and a novel agarolytic pathway exist in a marine bacterium, Vibrio sp. strain EJY3. In agarolytic pathways, agarose is depolymerized mainly into 4-sugar-unit oligomers by extracellular enzymes, which are then transported into cells. The imported oligomers are intracellularly depolymerized into galactose and 3,6-anhydro-l-galactose by two different agarolytic pathways, using different combinations of intracellular enzymes. These results elucidate the depolymerization routes of red macroalgal biomass in the ocean by marine bacteria and provide clues for developing industrial processes for efficiently producing sugars from red macroalgae.


Subject(s)
Bacterial Proteins/metabolism , Glycoside Hydrolases/metabolism , Sepharose/metabolism , Vibrio/metabolism
13.
Green Chem ; 22(5): 1776-1785, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-33790689

ABSTRACT

Recently, the utilization of renewable biomass instead of fossil fuels for producing fuels and chemicals is receiving much attention due to the global climate change. Among renewable biomass, marine algae are gaining importance as third generation biomass feedstocks owing to their advantages over lignocellulose. Particularly, red macroalgae have higher carbohydrate contents and simpler carbohydrate compositions than other marine algae. In red macroalgal carbphydrates, 3,6-anhydro-L-galactose (AHG) is the main sugar composing agarose along with D-galactose. However, AHG is not a common sugar and is chemically unstable. Thus, not only AHG but also red macroalgal biomass itself cannot be efficiently converted or utilized. Here, we biologically upgraded AHG to a new platform chemical, its sugar alcohol form, 3,6-anhydro-l-galactitol (AHGol), an anhydrohexitol. To accomplish this, we devised an integrated process encompassing a chemical hydrolysis process for producing agarobiose (AB) from agarose and a biological process for converting AB to AHGol using metabolically engineered Saccharomyces cerevisiae to efficiently produce AHGol from agarose with high titers and yields. AHGol was also converted to an intermediate chemical for plastics, isosorbide. To our knowledge, this is the first demonstration of upgrading a red macroalgal biomass component to a platform chemical via a new biological route, by using an engineered microorganism.

14.
J Dermatol Sci ; 96(2): 90-98, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31718895

ABSTRACT

BACKGROUND: Hyaluronic acid (HA) is an important factor in skin hydration maintenance. In mammalian keratinocytes, hyaluronan synthase 2 (HAS2) is a critical enzyme in HA production. Therefore, the promotion of HAS2 expression in keratinocytes may be a strategy for maintaining skin moisture. OBJECTIVE: The aim was to determine the skin hydration effect and regulatory mechanisms of 3,6-anhydro-L-galactose (L-AHG), a main component of red macroalgal carbohydrates in human keratinocytes. METHODS: L-AHG was applied to an immortalized human epidermal keratinocyte cell line (HaCaT cells). HA production, HAS2 protein and mRNA levels, and the activation of the signaling pathways involved in HAS2 expression were measured. HA levels were also evaluated for three dimensional (3D) reconstructed human skin. RESULTS: Our results suggest that L-AHG upregulates HA production and may enhance HAS2 expression by activating EGFR-mediated ERK, PI3K/Akt, and STAT3 signaling pathways. We confirmed that L-AHG activated the AMPKα signaling pathway which in turn could regulate HAS2 expression in HaCaT cells. The effects of L-AHG on HA production were observed in the 3D reconstructed human skin model. CONCLUSION: Our results suggest that L-AHG may enhance skin moisture retention by increasing HA synthesis in human epidermal keratinocytes.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Galactose/analogs & derivatives , Hyaluronan Synthases/metabolism , Hyaluronic Acid/biosynthesis , Keratinocytes/drug effects , Cell Line , Cosmetics , Enzyme Inhibitors/pharmacology , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Flavonoids/pharmacology , Galactose/pharmacology , Gene Expression Regulation , Humans , Image Processing, Computer-Assisted , Phosphatidylinositol 3-Kinases/metabolism , Rhodophyta/chemistry , STAT3 Transcription Factor/metabolism , Signal Transduction , Skin/drug effects , Skin/pathology
15.
J Agric Food Chem ; 67(26): 7297-7303, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31244198

ABSTRACT

3,6-Anhydro-l-galactose (AHG) produced from agarose in red macroalgae was recently suggested as an anticariogenic sugar to replace widely used xylitol. However, the multi-step process for obtaining monomeric sugar AHG from agarose may be expensive. Generally, it is easier to obtain oligosaccharides than monosaccharides from polysaccharides. Therefore, a one-step process to obtain agarobiose (AB) from agarose was recently developed, and here, we suggest AB as a new anticariogenic agent, owing to its anticariogenic activity against Streptococcus mutans. Among AHG-containing oligosaccharides, AB, neoagarobiose (NAB), agarooligosaccharides (AOSs), and neoagarooligosaccharides (NAOSs), AB showed higher inhibitory activity than AOSs against the growth and lactic acid production of S. mutans; no such inhibitory activity was observed for NAB and NAOSs. This inhibitory effect of AB was comparable to the previously reported inhibitory activity of AHG against S. mutans. These results suggest that AB, which can be more economically and simply produced than AHG, may serve as an anticariogenic sugar.


Subject(s)
Anti-Bacterial Agents/pharmacology , Disaccharides/pharmacology , Oligosaccharides/pharmacology , Plant Extracts/pharmacology , Rhodophyta/chemistry , Seaweed/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Disaccharides/chemistry , Disaccharides/isolation & purification , Oligosaccharides/chemistry , Oligosaccharides/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Streptococcus mutans/drug effects , Streptococcus mutans/growth & development
16.
ACS Synth Biol ; 8(2): 415-424, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30668900

ABSTRACT

Fucosyl-oligosaccharides (FOSs) play physiologically important roles as prebiotics, neuronal growth factors, and inhibitors of enteropathogens. However, challenges in designed synthesis and mass production of FOSs hamper their industrial applications. Here, we report flexible biosynthetic routes to produce various FOSs, including unnatural ones, through in vitro enzymatic reactions of various sugar acceptors, such as glucose, cellobiose, and agarobiose, and GDP-l-fucose as the fucose donor by using α1,2-fucosyltransferase (FucT2). Also, the whole-cell conversion for fucosylation of various sugar acceptors by overexpressing the genes associated with GDP-l-fucose production and fucT2 gene in Escherichia coli was demonstrated by producing 17.74 g/L of 2'-fucosylgalactose (2'-FG). Prebiotic effects of 2'-FG were verified on the basis of selective fermentability of 2'-FG by probiotic bifidobacteria. These biosynthetic routes can be used to engineer industrial microorganisms for more economical, more flexible, and safer production of FOSs than chemical synthesis of FOSs.


Subject(s)
Escherichia coli/metabolism , Oligosaccharides/metabolism , Prebiotics , Trisaccharides/metabolism
17.
ACS Synth Biol ; 7(11): 2529-2536, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30350568

ABSTRACT

2'-fucosyllactose (2-FL), one of the most abundant human milk oligosaccharides (HMOs), has received much attention due to its health-promoting activities, such as stimulating the growth of beneficial gut microorganisms, inhibiting pathogen infection, and enhancing the host immune system. Consequently, large quantities of 2-FL are on demand for food applications as well as in-depth investigation of its biological properties. Biosynthesis of 2-FL has been attempted primarily in Escherichia coli, which might not be the best option to produce food and cosmetic ingredients due to the presence of endotoxins on the cell surface. In this study, an alternative route to produce 2-FL via a de novo pathway using a food-grade microorganism,  Saccharomyces cerevisiae, has been devised. Specifically, heterologous genes, which are necessary to achieve the production of 2-FL from a mixture of glucose and lactose, were introduced into S. cerevisiae. When the lactose transporter (Lac12), de novo GDP-l-fucose pathway (consisting of GDP-d-mannose-4,6-dehydratase (Gmd) and GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase (WcaG)), and α1,2-fucosyltransferase (FucT2) were introduced, the resulting engineered strain (D452L-gwf) produced 0.51 g/L of 2-FL from a batch fermentation. In addition, 0.41 g/L of l-fucose was produced when α-l-fucosidase was additionally expressed in the 2-FL producing strain (D452L-gwf). To our knowledge, this is the first report of 2-FL and l-fucose production in engineered S. cerevisiae via the de novo pathway. This study provides the possibility of producing HMOs by a food-grade microorganism S. cerevisiae and paves the way for more HMO production in the future.


Subject(s)
Fucose/biosynthesis , Genetic Engineering , Milk, Human/metabolism , Saccharomyces cerevisiae/genetics , Trisaccharides/biosynthesis , Batch Cell Culture Techniques , Carbohydrate Epimerases/genetics , Fucosyltransferases/genetics , Humans , Hydro-Lyases/genetics , Lactose/metabolism , Saccharomyces cerevisiae/metabolism
18.
Microb Cell Fact ; 17(1): 101, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29950173

ABSTRACT

BACKGROUND: 2'-Fucosyllactose (2-FL), one of the most abundant oligosaccharides in human milk, has potential applications in foods due to its health benefits such as the selective promotion of bifidobacterial growth and the inhibition of pathogenic microbial binding to the human gut. Owing to the limited amounts of 2-FL in human milk, alternative microbial production of 2-FL is considered promising. To date, microbial production of 2-FL has been studied mostly in Escherichia coli. In this study, 2-FL was produced alternatively by using a yeast Saccharomyces cerevisiae, which may have advantages over E. coli. RESULTS: Fucose and lactose were used as the substrates for the salvage pathway which was constructed with fkp coding for a bifunctional enzyme exhibiting L-fucokinase and guanosine 5'-diphosphate-L-fucose phosphorylase activities, fucT2 coding for α-1,2-fucosyltransferase, and LAC12 coding for lactose permease. Production of 2-FL by the resulting engineered yeast was verified by mass spectrometry. 2-FL titers of 92 and 503 mg/L were achieved from 48-h batch fermentation and 120-h fed-batch fermentation fed with ethanol as a carbon source, respectively. CONCLUSIONS: This is the first report on 2-FL production by using yeast S. cerevisiae. These results suggest that S. cerevisiae can be considered as a host engineered for producing 2-FL via the salvage pathway.


Subject(s)
Metabolic Engineering , Milk, Human/chemistry , Oligosaccharides/biosynthesis , Saccharomyces cerevisiae/metabolism , Trisaccharides/biosynthesis , Batch Cell Culture Techniques , Fermentation , Fucose/metabolism , Fucosyltransferases/metabolism , Humans , Lactose/metabolism , Mass Spectrometry , Phosphorylases/metabolism , Saccharomyces cerevisiae/genetics , Galactoside 2-alpha-L-fucosyltransferase
19.
Biotechnol Biofuels ; 11: 140, 2018.
Article in English | MEDLINE | ID: mdl-29785207

ABSTRACT

BACKGROUND: Understanding the global metabolic network, significantly perturbed upon promiscuous activities of foreign enzymes and different carbon sources, is crucial for systematic optimization of metabolic engineering of yeast Saccharomyces cerevisiae. Here, we studied the effects of promiscuous activities of overexpressed enzymes encoded by foreign genes on rerouting of metabolic fluxes of an engineered yeast capable of assimilating sugars from renewable biomass by profiling intracellular and extracellular metabolites. RESULTS: Unbiased metabolite profiling of the engineered S. cerevisiae strain EJ4 revealed promiscuous enzymatic activities of xylose reductase and xylitol dehydrogenase on galactose and galactitol, respectively, resulting in accumulation of galactitol and tagatose during galactose fermentation. Moreover, during glucose fermentation, a trisaccharide consisting of glucose accumulated outside of the cells probably owing to the promiscuous and transglycosylation activity of ß-glucosidase expressed for hydrolyzing cellobiose. Meanwhile, higher accumulation of fatty acids and secondary metabolites was observed during xylose and cellobiose fermentations, respectively. CONCLUSIONS: The heterologous enzymes functionally expressed in S. cerevisiae showed promiscuous activities that led to unintended metabolic rerouting in strain EJ4. Such metabolic rerouting could result in a low yield and productivity of a final product due to the formation of unexpected metabolites. Furthermore, the global metabolic network can be significantly regulated by carbon sources, thus yielding different patterns of metabolite production. This metabolomic study can provide useful information for yeast strain improvement and systematic optimization of yeast metabolism to manufacture bio-based products.

20.
J Biotechnol ; 270: 12-20, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29408675

ABSTRACT

Marine red macroalgae have received much attention as sustainable resources for producing bio-based products. Therefore, understanding the metabolic pathways of carbohydrates from red macroalgae, in fermentative microorganisms, is crucial for efficient bioconversion of the carbohydrates into bio-based products. Recently, the novel catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red macroalgae, was discovered in a marine bacterium, Vibrio sp. strain EJY3. However, the global metabolic network in response to AHG remains unclear. Here, the intracellular metabolites of EJY3 grown on AHG, glucose, or galactose were comparatively profiled using gas chromatography/time-of-flight mass spectrometry. The global metabolite profiling results revealed that the metabolic profile for AHG significantly differed from those for other common sugars. Specifically, the metabolic intermediate of the AHG pathway, 3,6-anhydrogalactonate, was detected during growth only in the presence of AHG; thus, the recently discovered key steps in AHG catabolism was found not to occur in the catabolism of other common sugars. Moreover, the levels of metabolic intermediates related to glycerolipid metabolism and valine biosynthesis were higher with AHG than those with other sugars. These comprehensive metabolomic analytical results for AHG in this marine bacterium can be used as the basis for having fermentative microbial strains to engineered to efficiently utilize AHG from macroalgal biomass.


Subject(s)
Galactose/analogs & derivatives , Metabolomics/methods , Rhodophyta/chemistry , Vibrio/growth & development , Carbohydrate Metabolism , Fermentation , Galactose/chemistry , Galactose/pharmacology , Gas Chromatography-Mass Spectrometry , Glucose/pharmacology , Metabolic Networks and Pathways , Vibrio/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...