Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JACS Au ; 3(11): 3055-3065, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38034956

ABSTRACT

Intrinsically disordered proteins (IDPs) not only play important roles in biological processes but are also linked with the pathogenesis of various human diseases. Specific and reliable sensing of IDPs is crucial for exploring their roles but remains elusive due to structural plasticity. Here, we present the development of a new type of fluorescent protein for the ratiometric sensing and tracking of an IDP. A ß-strand of green fluorescent protein (GFP) was truncated, and the resulting GFP was further engineered to undergo the transition in the absorption maximum upon binding of a target motif within amyloid-ß (Aß) as a model IDP through rational design and directed evolution. Spectroscopic and structural analyses of the engineered truncated GFP demonstrated that a shift in the absorption maximum is driven by the change in the chromophore state from an anionic (460 nm) state into a neutral (390 nm) state as the Aß binds, allowing a ratiometric detection of Aß. The utility of the developed GFP was shown by the efficient and specific detection of an Aß and the tracking of its conformational change and localization in astrocytes.

3.
Cell Death Discov ; 9(1): 142, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37120628

ABSTRACT

Inflammasomes are multi-protein complexes and play a crucial role in host defense against pathogens. Downstream inflammatory responses through inflammasomes are known to be related to the oligomerization degree of ASC specks, but the detailed mechanism still remains unexplored. Here, we demonstrate that oligomerization degrees of ASC specks regulate the caspase-1 activation in the extracellular space. A protein binder specific for a pyrin domain (PYD) of ASC (ASCPYD) was developed, and structural analysis revealed that the protein binder effectively inhibits the interaction between PYDs, disassembling ASC specks into low oligomeric states. ASC specks with a low oligomerization degree were shown to enhance the activation of caspase-1 by recruiting and processing more premature caspase-1 through interactions between CARD of caspase-1 (caspase-1CARD) and CARD of ASC (ASCCARD). These findings can provide insight into controlling the inflammasome-mediated inflammatory process as well as the development of inflammasome-targeting drugs.

4.
J Chem Inf Model ; 59(10): 4504-4511, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31512871

ABSTRACT

The ß-sheet is an element of protein secondary structure, and intra-/intermolecular ß-sheet interactions play pivotal roles in biological regulatory processes including scaffolding, transporting, and oligomerization. In nature, a ß-sheet formation is tightly regulated because dysregulated ß-stacking often leads to severe diseases such as Alzheimer's, Parkinson's, systemic amyloidosis, or diabetes. Thus, the identification of intrinsic ß-sheet-forming propensities can provide valuable insight into protein designs for the development of novel therapeutics. However, structure-based design methods may not be generally applicable to such amyloidogenic peptides mainly owing to high structural plasticity and complexity. Therefore, an alternative design strategy based on complementary sequence information is of significant importance. Herein, we developed a database search method called ß-Stacking Interaction DEsign for Reciprocity (B-SIDER) for the design of complementary ß-strands. This method makes use of the structural database information and generates target-specific score matrices. The discriminatory power of the B-SIDER score function was tested on representative amyloidogenic peptide substructures against a sequence-based score matrix (PASTA 2.0) and two popular ab initio protein design score functions (Rosetta and FoldX). B-SIDER is able to distinguish wild-type amyloidogenic ß-strands as favored interactions in a more consistent manner than other methods. B-SIDER was prospectively applied to the design of complementary ß-strands for a splitGFP scaffold. Three variants were identified to have stronger interactions than the original sequence selected through a directed evolution, emitting higher fluorescence intensities. Our results indicate that B-SIDER can be applicable to the design of other ß-strands, assisting in the development of therapeutics against disease-related amyloidogenic peptides.


Subject(s)
Algorithms , Computer Simulation , Databases, Chemical , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...