Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370679

ABSTRACT

Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 MAPK signaling pathways, respectively, with contributions of GRA16/18 and counter-regulation by effector TEEGR. Further, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors.

2.
bioRxiv ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37986960

ABSTRACT

Aging brings dysregulation of various processes across organs and tissues, often stemming from stochastic damage to individual cells over time. Here, we used a combination of single-nucleus RNA-sequencing and single-cell whole-genome sequencing to identify transcriptomic and genomic changes in the prefrontal cortex of the human brain across life span, from infancy to centenarian. We identified infant-specific cell clusters enriched for the expression of neurodevelopmental genes, and a common down-regulation of cell-essential homeostatic genes that function in ribosomes, transport, and metabolism during aging across cell types. Conversely, expression of neuron-specific genes generally remains stable throughout life. We observed a decrease in specific DNA repair genes in aging, including genes implicated in generating brain somatic mutations as indicated by mutation signature analysis. Furthermore, we detected gene-length-specific somatic mutation rates that shape the transcriptomic landscape of the aged human brain. These findings elucidate critical aspects of human brain aging, shedding light on transcriptomic and genomics dynamics.

3.
bioRxiv ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37546958

ABSTRACT

From nematodes to placental mammals, key components of the germline transposon silencing piRNAs pathway localize to phase separated perinuclear granules. In Drosophila, the PIWI protein Aub, DEAD box protein Vasa and helicase Armi localize to nuage granules and are required for ping-pong piRNA amplification and phased piRNA processing. Drosophila piRNA mutants lead to genome instability and Chk2 kinase DNA damage signaling. By systematically analyzing piRNA pathway organization, small RNA production, and long RNA expression in single piRNA mutants and corresponding chk2/mnk double mutants, we show that Chk2 activation disrupts nuage localization of Aub and Vasa, and that the HP1 homolog Rhino, which drives piRNA precursor transcription, is required for Aub, Vasa, and Armi localization to nuage. However, these studies also show that ping-pong amplification and phased piRNA biogenesis are independent of nuage localization of Vasa, Aub and Armi. Dispersed cytoplasmic proteins thus appear to mediate these essential piRNA pathway functions.

4.
Nucleic Acids Res ; 51(5): 2066-2086, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36762470

ABSTRACT

Transposons are mobile genetic elements prevalent in the genomes of most species. The distribution of transposons within a genome reflects the actions of two opposing processes: initial insertion site selection, and selective pressure from the host. By analyzing whole-genome sequencing data from transposon-activated Drosophila melanogaster, we identified 43 316 de novo and 237 germline insertions from four long-terminal-repeat (LTR) transposons, one LINE transposon (I-element), and one DNA transposon (P-element). We found that all transposon types favored insertion into promoters de novo, but otherwise displayed distinct insertion patterns. De novo and germline P-element insertions preferred replication origins, often landing in a narrow region around transcription start sites and in regions of high chromatin accessibility. De novo LTR transposon insertions preferred regions with high H3K36me3, promoters and exons of active genes; within genes, LTR insertion frequency correlated with gene expression. De novo I-element insertion density increased with distance from the centromere. Germline I-element and LTR transposon insertions were depleted in promoters and exons, suggesting strong selective pressure to remove transposons from functional elements. Transposon movement is associated with genome evolution and disease; therefore, our results can improve our understanding of genome and disease biology.


Subject(s)
DNA Transposable Elements , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , DNA Transposable Elements/genetics , Chromosomes , Base Sequence , Epigenesis, Genetic
5.
J Pathol ; 259(4): 415-427, 2023 04.
Article in English | MEDLINE | ID: mdl-36641763

ABSTRACT

CRISPR/Cas9-driven cancer modeling studies are based on the disruption of tumor suppressor genes by small insertions or deletions (indels) that lead to frame-shift mutations. In addition, CRISPR/Cas9 is widely used to define the significance of cancer oncogenes and genetic dependencies in loss-of-function studies. However, how CRISPR/Cas9 influences gain-of-function oncogenic mutations is elusive. Here, we demonstrate that single guide RNA targeting exon 3 of Ctnnb1 (encoding ß-catenin) results in exon skipping and generates gain-of-function isoforms in vivo. CRISPR/Cas9-mediated exon skipping of Ctnnb1 induces liver tumor formation in synergy with YAPS127A in mice. We define two distinct exon skipping-induced tumor subtypes with different histological and transcriptional features. Notably, ectopic expression of two exon-skipped ß-catenin transcript isoforms together with YAPS127A phenocopies the two distinct subtypes of liver cancer. Moreover, we identify similar CTNNB1 exon-skipping events in patients with hepatocellular carcinoma. Collectively, our findings advance our understanding of ß-catenin-related tumorigenesis and reveal that CRISPR/Cas9 can be repurposed, in vivo, to study gain-of-function mutations of oncogenes in cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , beta Catenin/genetics , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Exons/genetics , Liver Neoplasms/genetics
6.
Reproduction ; 165(2): 183-196, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36395073

ABSTRACT

In brief: The testis-specific transcription factor, TCFL5, expressed in pachytene spermatocytes regulates the meiotic gene expression program in collaboration with the transcription factor A-MYB. Abstract: In male mice, the transcription factors STRA8 and MEISON initiate meiosis I. We report that STRA8/MEISON activates the transcription factors A-MYB and TCFL5, which together reprogram gene expression after spermatogonia enter into meiosis. TCFL5 promotes the transcription of genes required for meiosis, mRNA turnover, miR-34/449 production, meiotic exit, and spermiogenesis. This transcriptional architecture is conserved in rhesus macaque, suggesting TCFL5 plays a central role in meiosis and spermiogenesis in placental mammals. Tcfl5em1/em1 mutants are sterile, and spermatogenesis arrests at the mid- or late-pachytene stage of meiosis. Moreover, Tcfl5+/em1 mutants produce fewer motile sperm.


Subject(s)
Placenta , Transcription Factors , Animals , Female , Male , Mice , Pregnancy , Macaca mulatta/metabolism , Mammals/metabolism , Meiosis , Placenta/metabolism , Semen/metabolism , Spermatocytes/metabolism , Spermatogenesis/genetics , Testis/metabolism , Transcription Factors/metabolism
7.
RNA ; 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36241367

ABSTRACT

In male mice, the transcription factor A MYB initiates the transcription of pachytene piRNA genes during meiosis. Here, we report that A MYB activates the transcription factor Tcfl5 produced in pachytene spermatocytes. Subsequently, A MYB and TCFL5 reciprocally reinforce their own transcription to establish a positive feedback circuit that triggers pachytene piRNA production. TCFL5 regulates the expression of genes required for piRNA maturation and promotes transcription of evolutionarily young pachytene piRNA genes, whereas A-MYB activates the transcription of older pachytene piRNA genes. Intriguingly, pachytene piRNAs from TCFL5-dependent young loci initiates the production of piRNAs from A-MYB-dependent older loci ensuring the self-propagation of pachytene piRNAs. A MYB and TCFL5 act via a set of incoherent feedforward loops that drive regulation of gene expression by pachytene piRNAs during spermatogenesis. This regulatory architecture is conserved in rhesus macaque, suggesting that it was present in the last common ancestor of placental mammals.

8.
Dev Cell ; 56(18): 2623-2635.e5, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34547226

ABSTRACT

piRNAs guide Piwi/Panoramix-dependent H3K9me3 chromatin modification and transposon silencing during Drosophila germline development. The THO RNA export complex is composed of Hpr1, Tho2, and Thoc5-7. Null thoc7 mutations, which displace Thoc5 and Thoc6 from a Tho2-Hpr1 subcomplex, reduce expression of a subset of germline piRNAs and increase transposon expression, suggesting that THO silences transposons by promoting piRNA biogenesis. Here, we show that the thoc7-null mutant combination increases transposon transcription but does not reduce anti-sense piRNAs targeting half of the transcriptionally activated transposon families. These mutations also fail to reduce piRNA-guided H3K9me3 chromatin modification or block Panoramix-dependent silencing of a reporter transgene, and unspliced transposon transcripts co-precipitate with THO through a Piwi- and Panoramix-independent mechanism. Mutations in piwi also dominantly enhance germline defects associated with thoc7-null alleles. THO thus functions in a piRNA-independent transposon-silencing pathway, which acts cooperatively with Piwi to support germline development.


Subject(s)
Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Silencing/physiology , Nuclear Proteins/metabolism , RNA, Small Interfering/genetics , Animals , Argonaute Proteins/genetics , Cell Nucleus/metabolism , DNA Transposable Elements/genetics , Drosophila/metabolism , Drosophila melanogaster/metabolism , Germ Cells/metabolism
9.
Nat Commun ; 12(1): 73, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397987

ABSTRACT

In the male germ cells of placental mammals, 26-30-nt-long PIWI-interacting RNAs (piRNAs) emerge when spermatocytes enter the pachytene phase of meiosis. In mice, pachytene piRNAs derive from ~100 discrete autosomal loci that produce canonical RNA polymerase II transcripts. These piRNA clusters bear 5' caps and 3' poly(A) tails, and often contain introns that are removed before nuclear export and processing into piRNAs. What marks pachytene piRNA clusters to produce piRNAs, and what confines their expression to the germline? We report that an unusually long first exon (≥ 10 kb) or a long, unspliced transcript correlates with germline-specific transcription and piRNA production. Our integrative analysis of transcriptome, piRNA, and epigenome datasets across multiple species reveals that a long first exon is an evolutionarily conserved feature of pachytene piRNA clusters. Furthermore, a highly methylated promoter, often containing a low or intermediate level of CG dinucleotides, correlates with germline expression and somatic silencing of pachytene piRNA clusters. Pachytene piRNA precursor transcripts bind THOC1 and THOC2, THO complex subunits known to promote transcriptional elongation and mRNA nuclear export. Together, these features may explain why the major sources of pachytene piRNA clusters specifically generate these unique small RNAs in the male germline of placental mammals.


Subject(s)
Epigenesis, Genetic , Exons/genetics , Mammals/genetics , Pachytene Stage/genetics , RNA, Small Interfering/metabolism , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Acetylation , Animals , DNA Methylation/genetics , DNA-Binding Proteins/metabolism , Evolution, Molecular , Histones/metabolism , Introns/genetics , Male , Mice, Inbred C57BL , Nuclear Proteins/metabolism , Organ Specificity/genetics , Promoter Regions, Genetic/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction/genetics , Testis/metabolism , Transcription, Genetic
10.
Nucleic Acids Res ; 49(8): e44, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33511407

ABSTRACT

Transposons are genomic parasites, and their new insertions can cause instability and spur the evolution of their host genomes. Rapid accumulation of short-read whole-genome sequencing data provides a great opportunity for studying new transposon insertions and their impacts on the host genome. Although many algorithms are available for detecting transposon insertions, the task remains challenging and existing tools are not designed for identifying de novo insertions. Here, we present a new benchmark fly dataset based on PacBio long-read sequencing and a new method TEMP2 for detecting germline insertions and measuring de novo 'singleton' insertion frequencies in eukaryotic genomes. TEMP2 achieves high sensitivity and precision for detecting germline insertions when compared with existing tools using both simulated data in fly and experimental data in fly and human. Furthermore, TEMP2 can accurately assess the frequencies of de novo transposon insertions even with high levels of chimeric reads in simulated datasets; such chimeric reads often occur during the construction of short-read sequencing libraries. By applying TEMP2 to published data on hybrid dysgenic flies inflicted by de-repressed P-elements, we confirmed the continuous new insertions of P-elements in dysgenic offspring before they regain piRNAs for P-element repression. TEMP2 is freely available at Github: https://github.com/weng-lab/TEMP2.


Subject(s)
Benchmarking/methods , DNA Transposable Elements , Drosophila/genetics , Genomics/methods , Germ Cells/metabolism , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Algorithms , Animals , Female , Genome, Human , Humans , Software , Whole Genome Sequencing
11.
Hepatology ; 73(3): 1011-1027, 2021 03.
Article in English | MEDLINE | ID: mdl-32452550

ABSTRACT

BACKGROUND AND AIMS: Despite surgical and chemotherapeutic advances, the 5-year survival rate for stage IV hepatoblastoma (HB), the predominant pediatric liver tumor, remains at 27%. Yes-associated protein 1 (YAP1) and ß-catenin co-activation occurs in 80% of children's HB; however, a lack of conditional genetic models precludes tumor maintenance exploration. Thus, the need for a targeted therapy remains unmet. Given the predominance of YAP1 and ß-catenin activation in HB, we sought to evaluate YAP1 as a therapeutic target in HB. APPROACH AND RESULTS: We engineered the conditional HB murine model using hydrodynamic injection to deliver transposon plasmids encoding inducible YAP1S127A , constitutive ß-cateninDelN90 , and a luciferase reporter to murine liver. Tumor regression was evaluated using bioluminescent imaging, tumor landscape characterized using RNA and ATAC sequencing, and DNA footprinting. Here we show that YAP1S127A withdrawal mediates more than 90% tumor regression with survival for 230+ days in mice. YAP1S127A withdrawal promotes apoptosis in a subset of tumor cells, and in remaining cells induces a cell fate switch that drives therapeutic differentiation of HB tumors into Ki-67-negative hepatocyte-like HB cells ("HbHeps") with hepatocyte-like morphology and mature hepatocyte gene expression. YAP1S127A withdrawal drives the formation of hbHeps by modulating liver differentiation transcription factor occupancy. Indeed, tumor-derived hbHeps, consistent with their reprogrammed transcriptional landscape, regain partial hepatocyte function and rescue liver damage in mice. CONCLUSIONS: YAP1S127A withdrawal, without silencing oncogenic ß-catenin, significantly regresses hepatoblastoma, providing in vivo data to support YAP1 as a therapeutic target for HB. YAP1S127A withdrawal alone sufficiently drives long-term regression in HB, as it promotes cell death in a subset of tumor cells and modulates transcription factor occupancy to reverse the fate of residual tumor cells to mimic functional hepatocytes.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Hepatoblastoma/metabolism , Hepatocytes/metabolism , Liver Neoplasms/metabolism , Transcription Factors/metabolism , Animals , Cell Differentiation , Chromatin/metabolism , Genetic Engineering , Hepatoblastoma/therapy , Humans , Liver Neoplasms/therapy , Mice , YAP-Signaling Proteins
12.
Nat Genet ; 52(7): 728-739, 2020 07.
Article in English | MEDLINE | ID: mdl-32601478

ABSTRACT

Pachytene PIWI-interacting RNAs (piRNAs), which comprise >80% of small RNAs in the adult mouse testis, have been proposed to bind and regulate target RNAs like microRNAs, cleave targets like short interfering RNAs or lack biological function altogether. Although piRNA pathway protein mutants are male sterile, no biological function has been identified for any mammalian piRNA-producing locus. Here, we report that males lacking piRNAs from a conserved mouse pachytene piRNA locus on chromosome 6 (pi6) produce sperm with defects in capacitation and egg fertilization. Moreover, heterozygous embryos sired by pi6-/- fathers show reduced viability in utero. Molecular analyses suggest that pi6 piRNAs repress gene expression by cleaving messenger RNAs encoding proteins required for sperm function. pi6 also participates in a network of piRNA-piRNA precursor interactions that initiate piRNA production from a second piRNA locus on chromosome 10, as well as pi6 itself. Our data establish a direct role for pachytene piRNAs in spermiogenesis and embryo viability.


Subject(s)
RNA, Small Interfering/genetics , RNA, Small Interfering/physiology , Spermatogenesis/genetics , Animals , Biological Evolution , Cell Nucleus , Embryonic Development , Female , Fertility , Gene Deletion , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Models, Biological , Pachytene Stage/genetics , Promoter Regions, Genetic , RNA, Messenger/metabolism , Sperm Capacitation/genetics , Sperm Capacitation/physiology , Sperm-Ovum Interactions/physiology
13.
Cell Rep ; 30(8): 2672-2685.e5, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32101744

ABSTRACT

In Drosophila, transposon-silencing piRNAs are derived from heterochromatic clusters and a subset of euchromatic transposon insertions, which are bound by the Rhino-Deadlock-Cutoff complex. The HP1 homolog Rhino binds to Deadlock, which recruits TRF2 to promote non-canonical transcription from both genomic strands. Cuff function is less well understood, but this Rai1 homolog shows hallmarks of adaptive evolution, which can remodel functional interactions within host defense systems. Supporting this hypothesis, Drosophila simulans Cutoff is a dominant-negative allele when expressed in Drosophila melanogaster, in which it traps Deadlock, TRF2, and the conserved transcriptional co-repressor CtBP in stable complexes. Cutoff functions with Rhino and Deadlock to drive non-canonical transcription. In contrast, CtBP suppresses canonical transcription of transposons and promoters flanking the major germline clusters, and canonical transcription interferes with downstream non-canonical transcription and piRNA production. Adaptive evolution thus targets interactions among Cutoff, TRF2, and CtBP that balance canonical and non-canonical piRNA precursor transcription.


Subject(s)
Drosophila/genetics , Gene Regulatory Networks , RNA, Small Interfering/metabolism , Alleles , Animals , DNA Transposable Elements/genetics , Drosophila Proteins/metabolism , Genes, Dominant , Models, Biological , Mutation/genetics , Transcription Factors/metabolism , Transcription, Genetic
14.
Nat Ecol Evol ; 4(1): 156-168, 2020 01.
Article in English | MEDLINE | ID: mdl-31900453

ABSTRACT

In the fetal mouse testis, PIWI-interacting RNAs (piRNAs) guide PIWI proteins to silence transposons but, after birth, most post-pubertal pachytene piRNAs map to the genome uniquely and are thought to regulate genes required for male fertility. In the human male, the developmental classes, precise genomic origins and transcriptional regulation of postnatal piRNAs remain undefined. Here, we demarcate the genes and transcripts that produce postnatal piRNAs in human juvenile and adult testes. As in the mouse, human A-MYB drives transcription of both pachytene piRNA precursor transcripts and messenger RNAs encoding piRNA biogenesis factors. Although human piRNA genes are syntenic to those in other placental mammals, their sequences are poorly conserved. In fact, pachytene piRNA loci are rapidly diverging even among modern humans. Our findings suggest that, during mammalian evolution, pachytene piRNA genes are under few selective constraints. We speculate that pachytene piRNA diversity may provide a hitherto unrecognized driver of reproductive isolation.


Subject(s)
Genome , Testis , Adolescent , Animals , Female , Gene Expression Regulation , Humans , Male , Mice , Pregnancy , RNA, Messenger , RNA, Small Interfering
15.
Cell ; 179(3): 632-643.e12, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31607510

ABSTRACT

Antisense Piwi-interacting RNAs (piRNAs) guide silencing of established transposons during germline development, and sense piRNAs drive ping-pong amplification of the antisense pool, but how the germline responds to genome invasion is not understood. The KoRV-A gammaretrovirus infects the soma and germline and is sweeping through wild koalas by a combination of horizontal and vertical transfer, allowing direct analysis of retroviral invasion of the germline genome. Gammaretroviruses produce spliced Env mRNAs and unspliced transcripts encoding Gag, Pol, and the viral genome, but KoRV-A piRNAs are almost exclusively derived from unspliced genomic transcripts and are strongly sense-strand biased. Significantly, selective piRNA processing of unspliced proviral transcripts is conserved from insects to placental mammals. We speculate that bypassed splicing generates a conserved molecular pattern that directs proviral genomic transcripts to the piRNA biogenesis machinery and that this "innate" piRNA response suppresses transposition until antisense piRNAs are produced, establishing sequence-specific adaptive immunity.


Subject(s)
Gammaretrovirus/genetics , Phascolarctidae/genetics , RNA, Small Interfering/genetics , Animals , DNA Transposable Elements , Gammaretrovirus/metabolism , Gammaretrovirus/pathogenicity , Gene Products, env/genetics , Gene Products, env/metabolism , Gene Products, gag/genetics , Gene Products, gag/metabolism , Gene Products, pol/genetics , Gene Products, pol/metabolism , Genome , Germ Cells/metabolism , Germ Cells/virology , Male , Mice , Mice, Inbred C57BL , Phascolarctidae/virology , RNA Splicing , RNA, Antisense/genetics , RNA, Antisense/metabolism , RNA, Small Interfering/metabolism
16.
Cell Rep ; 24(13): 3413-3422.e4, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30257203

ABSTRACT

In Drosophila, the piRNAs that guide germline transposon silencing are produced from heterochromatic clusters marked by the HP1 homolog Rhino. We show that Rhino promotes cluster transcript association with UAP56 and the THO complex, forming RNA-protein assemblies that are unique to piRNA precursors. UAP56 and THO are ubiquitous RNA-processing factors, and null alleles of uap56 and the THO subunit gene tho2 are lethal. However, uap56sz15 and mutations in the THO subunit genes thoc5 and thoc7 are viable but sterile and disrupt piRNA biogenesis. The uap56sz15 allele reduces UAP56 binding to THO, and the thoc5 and thoc7 mutations disrupt interactions among the remaining THO subunits and UAP56 binding to the core THO subunit Hpr1. These mutations also reduce Rhino binding to clusters and trigger Rhino binding to ectopic sites across the genome. Rhino thus promotes assembly of piRNA precursor complexes, and these complexes restrict Rhino at cluster heterochromatin.


Subject(s)
Heterochromatin/metabolism , RNA, Small Interfering/metabolism , Animals , Binding Sites , Chromosomal Proteins, Non-Histone/metabolism , DEAD-box RNA Helicases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster , Heterochromatin/genetics , Nuclear Proteins/metabolism , Protein Binding , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...