Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 919: 170879, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38354798

ABSTRACT

Phytoremediation is an environmentally friendly and safe approach for remediating environments contaminated with heavy metals. Humic acid (HA) has high biological activity and can effectively complex with heavy metals. However, whether HA affects available Cd storage and the Cd accumulation ability of plants by altering the soil microenvironment and the distribution of special functional microorganisms remains unclear. Here, we investigated the effects of applying kitchen compost-derived HA on the growth and Cd enrichment capacity of ryegrass (Lolium perenne L.). Additionally, the key role of HA in regulating the structure of rhizosphere soil bacterial communities was identified. HA promoted the growth of perennial ryegrass and biomass accumulation and enhanced the Cd enrichment capacity of ryegrass. The positive effect of HA on the soil microenvironment and rhizosphere bacterial community was the main factor promoting the growth of ryegrass, and this was confirmed by the significant positive correlation between the ryegrass growth index and the content of SOM, AP, AK, and AN, as well as the abundance of rhizosphere growth-promoting bacteria such as Pseudomonas, Steroidobacter, Phenylobacterium, and Caulobacter. HA passivated Cd and inhibited the translocation capacity of ryegrass. The auxiliary effect of resistant bacteria on plants drove the absorption of Cd by ryegrass. In addition, HA enhanced the remediation of Cd-contaminated soil by ryegrass under different Cd levels, which indicated that kitchen compost-derived HA could be widely used for the phytoremediation of Cd-contaminated soil. Generally, our findings will aid the development of improved approaches for the use of kitchen compost-derived HA for the remediation of Cd-contaminated soil.


Subject(s)
Composting , Lolium , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Humic Substances/analysis , Soil/chemistry , Rhizosphere , Soil Pollutants/analysis , Metals, Heavy/analysis , Biodegradation, Environmental , Bacteria
2.
Sci Total Environ ; 917: 170451, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38296063

ABSTRACT

Soil contamination by heavy metals poses major risks to human health and the environment. Given the current status of heavy metal pollution, many remediation techniques have been tested at laboratory and contaminated sites. The effects of soil organic matter-mediated electron transfer on heavy metal remediation have not been adequately studied, and the key mechanisms underlying this process have not yet been elucidated. In this review, microbial extracellular electron transfer pathways, organic matter electron transfer for heavy metal reduction, and the factors affecting these processes were discussed to enhance our understanding of heavy metal pollution. It was found that microbial extracellular electrons delivered by electron shuttles have the longest distance among the three electron transfer pathways, and the application of exogenous electron shuttles lays the foundation for efficient and persistent remediation of heavy metals. The organic matter-mediated electron transfer process, wherein organic matter acts as an electron shuttle, promotes the conversion of high valence state metal ions, such as Cr(VI), Hg(II), and U(VI), into less toxic and morphologically stable forms, which inhibits their mobility and bioavailability. Soil type, organic matter structural and content, heavy metal concentrations, and environmental factors (e.g., pH, redox potential, oxygen conditions, and temperature) all influence organic matter-mediated electron transfer processes and bioremediation of heavy metals. Organic matter can more effectively mediate electron transfer for heavy metal remediation under anaerobic conditions, as well as when the heavy metal content is low and the redox potential is suitable under fluvo-aquic/paddy soil conditions. Organic matter with high aromaticity, quinone groups, and phenol groups has a stronger electron transfer ability. This review provides new insights into the control and management of soil contamination and heavy metal remediation technologies.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Soil Pollutants , Humans , Electrons , Soil/chemistry , Soil Pollutants/analysis , Metals, Heavy/analysis , Biodegradation, Environmental
3.
Environ Res ; 236(Pt 2): 116502, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37406721

ABSTRACT

Coal mining usually brought polycyclic aromatic hydrocarbons (PAHs) contamination. Relationships between the concentration of PAHs, bacterial communities and soil environmental factors were important for bioremediation of PAHs in soil. Total 4 kinds of soil samples with different concentrations of PAHs were selected from 7 typical coal gangue(CG) sites in Huainan, Anhui Province. The relationships between microorganisms, dissolved organic matter (DOM) composition and PAHs concentration were systematically analyzed in this work. Total 11 kinds of PAHs were enriched in the soil surface layer. That was attributed to the strong binding of soil organic matter (SOM) to PAHs. PAHs contamination reduced the diversity of soil microbial. The abundance of PAHs-degrading genera such as Arthrobacter decreased with the increasing concentration of PAHs. Mycobacterium increased with the increasing concentration of PAHs in all samples. The microbial activities decreased with increasing concentration of PAHs. The increasing contents of LWM-PAHs and DOM were beneficial to improve the activities of soil microbial. The increasing DOM aromaticity was beneficial to improve the bioavailability of PAHs according to the correlation analysis between PAHs content and DOM structural parameters. The obtained results provide a basis for better understanding the contamination characteristics and microbial communities of coal gangue PAH-contaminated sites.

4.
Environ Pollut ; 322: 121136, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36736561

ABSTRACT

Coal is the main source of energy for China's economic development, but coal gangue dumps are a major source of heavy metal pollution. Bacterial communities have a major effect on the bioremediation of heavy metals in coal gangue dumps. The effects of different concentrations of heavy metals on the composition of bacterial communities in coal gangue sites remain unclear. Soil bacterial communities from four gangue sites that vary in natural heavy metal concentrations were investigated using high-throughput sequencing in this study. Correlations among bacterial communities, heavy metal concentrations, physicochemical properties of the soil, and the composition of dissolved organic matter of soil in coal gangue dumps were also analyzed. Our results indicated that Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Gemmatimonadota were the bacterial taxa most resistant to heavy metal stress at gangue sites. Heavy metal contamination may be the main cause of changes in bacterial communities. Heavy metal pollution can foster mutually beneficial symbioses between microbial species. Microbial-derived organic matter was the main source of soil organic matter in unvegetated mining areas, and this could affect the toxicity and transport of heavy metals in soil. Polar functional groups such as hydroxyl and ester groups (A226-400) play an important role in the reaction of cadmium (Cd) and lead (Pb), and organic matter with low molecular weight (SR) tends to bind more to mercury (Hg). In addition to heavy metals, the content of nitrogen (N), phosphorus (P), and total organic carbon (TOC) also affected the composition of the bacterial communities; TOC had the strongest effect, followed by N, SOM, and P. Our findings have implications for the microbial remediation of heavy metal-contaminated soils in coal gangue sites and sustainable development.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Coal/analysis , Metals, Heavy/analysis , Cadmium/analysis , Mercury/analysis , Soil/chemistry , Bacteria/metabolism , Soil Pollutants/analysis , China
5.
Environ Sci Pollut Res Int ; 30(5): 12428-12440, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36112290

ABSTRACT

The migration and transformation of dissolved organic matter (DOM) caused by landfill leachate leakage affected the phylogenetic development of bacterial communities in groundwater around the landfill. Previous studies mainly focused on the hydrochemical properties of DOM in groundwater contaminated by landfill leachate and the relationships between groundwater quality parameters and bacterial communities. However, the changes in DOM components and bacterial communities caused by landfill leachate leakage and their correlations remained unclear. In this work, we analyzed the evolution characteristics of DOM and identified the bacterial communities and their corresponding functions in groundwater around the landfill. The results showed that DOM content in groundwater increased after the diffusion of landfill leachate to groundwater. Significant differences in characteristics between DOM components were presented at different locations in the landfill leachate plume due to the physical dilution and bacterial degradation of DOM. One of the obvious manifestations was the tendency of humic acid-like substances to accumulate at downstream points. Samples from the contaminated aquifer had higher diversity and abundance of bacterial communities than those in the uncontaminated aquifer. Anaerobic or facultative anaerobic bacteria played predominant roles in contaminated groundwater, due to the input of organic matter, nitrate, and ammonia nitrogen. Redundancy analysis indicated that the content of fulvic acid-like DOM had a conspicuous impact on the composition of bacterial communities in the polluted groundwater. Vogesella were the dominant bacteria at the genus level in groundwater around the landfill. Furthermore, Vogesella were significant for microbial utilization and played an important role in the production of fulvic acid-like DOM. These results indicated that landfill leachate pollution posed a potential threat to the structure and function of bacterial communities in groundwater, and provided a basis for exploring the interaction between DOM composition and bacterial communities in groundwater plume contaminated by landfill leachate.


Subject(s)
Groundwater , Water Pollutants, Chemical , Dissolved Organic Matter , Water Pollutants, Chemical/analysis , Phylogeny , Groundwater/chemistry , Bacteria
6.
Ecotoxicol Environ Saf ; 227: 112900, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34673405

ABSTRACT

Pentachlorophenol (PCP) is a common residual organic pollutant in paddy soil, and its harmful effects on soil ecosystems have been confirmed. Humic acid (HA) could act as an electron shuttle to promote the reductive dechlorination of PCP under anaerobic conditions. Humic-like substances produced by composting of kitchen waste were able to facilitate the reductive dechlorination of PCP during Fe(III) oxide reduction by iron-reducing bacteria. However, the effects of compost-derived HAs on reductive dechlorination of PCP in a paddy soil system with a high iron content have not been fully confirmed. The characteristics of HAs from different stages of composting during bio-dechlorination of PCP were still unclear. The functional components of compost-derived HAs, which are responsible for reductive dechlorination of PCP in different stages of composting, also need further investigation. In this study, we conducted a series of experiments on the Guangdong paddy soil system with high iron content (17.5 mg kg-1) to investigate the reductive dechlorination of PCP by HA in the early, middle, and later stages of food waste composting. The results showed that the middle- and late-stages of compost-derived HAs all promoted reductive dechlorination of PCP in the paddy system, but it was opposite in the early-stage. Significant differences were also presented in the components of HAs from different stages of composting. The early-stage compost-derived HAs contain numerous easy degradable components, it would inhibit the dechlorination of PCP by the changes of microbial metabolism in paddy soil. Compost-derived HAs in the middle composting stage showed the best reductive dechlorination effects on PCP. The reason might be that the compost-derived HAs in the middle composting stage could act both as electron donors and transfers. The electron transfer capacities (ETC) of middle-stage compost-derived HAs were significantly higher than those in the early and later composting stages. Compared with the natural HAs in the soil system, compost-derived HAs contained more chlorinated products with lower toxicities after the PCP degradation. This result mainly contributed to the detoxification and mineralization of PCP in the soil. These findings clarified the effects of compost-derived HAs on PCP bio-dechlorination in paddy soil with high iron content, identifying the optimal phase of compost-derived HA and providing a theoretical basis for the utilization of kitchen waste composting as a resource of HA.


Subject(s)
Composting , Pentachlorophenol , Refuse Disposal , Soil Pollutants , Ecosystem , Ferric Compounds , Food , Humic Substances/analysis , Iron , Soil
7.
Plants (Basel) ; 9(2)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033313

ABSTRACT

Ammopiptanthus mongolicus, a xerophyte plant that belongs to the family Leguminosae, adapts to extremely arid, hot, and cold environments, making it an excellent woody plant to study the molecular mechanisms underlying abiotic stress tolerance. Three dehydrin genes, AmDHN132, AmDHN154, and AmDHN200 were cloned from abiotic stress treated A. mongolicus seedlings. Cytomembrane-located AmDHN200, nucleus-located AmDHN154, and cytoplasm and nucleus-located AmDHN132 were characterized by constitutive overexpression of their genes in Arabidopsis thaliana. Overexpression of AmDHN132, AmDHN154, and AmDHN200 in transgenic Arabidopsis improved salt, osmotic, and cold tolerances, with AmDHN132 having the largest effect, whereas the growth of transformed plants is not negatively affected. These results indicate that AmDHNs contribute to the abiotic stress tolerance of A. mongolicus and that AmDHN genes function differently in response to abiotic stresses. Furthermore, they have the potential to be used in the genetic engineering of stress tolerance in higher plants.

8.
Mitochondrial DNA B Resour ; 3(1): 9-11, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-33474049

ABSTRACT

Ammopiptanthus mongolicus is a tertiary relict evergreen broad-leaf shrub in family Fabaceae with remarkable tolerance to desiccation and low temperature. In this study, we report the complete mitochondrial genome of A. mongolicus. The total genome length was 475,396 bp and contained a total of 127 genes, including 79 protein-coding genes (28 novel genes, 45 known functional genes, and six known orf genes), three rRNA genes, and 45 tRNA genes. Most of the genes were single-copy genes, only six were duplicated and two were multi-copy. The mitochondrial genome also contained 'promiscuous' sequences from the chloroplast, 16 intact tRNAs of mitochondrial origin, and 29 intact and potentially functional chloroplast-derived tRNAs. The overall GC content of the mitochondrial DNA was 42.75%. A neighbour-joining phylogenomic analysis showed that A. mongolicus was closely related to Medicago truncatula, which also belongs to family Leguminosae.

SELECTION OF CITATIONS
SEARCH DETAIL
...