Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 5(2): e8943, 2010 Feb 18.
Article in English | MEDLINE | ID: mdl-20174626

ABSTRACT

BACKGROUND: Nuclear Magnetic Resonance (NMR) spectroscopy offers a variety of experiments to study protein-ligand interactions at atomic resolution. Among these experiments, 15N Heteronuclear Single Quantum Correlation (HSQC)experiment is simple, less time consuming and highly informative in mapping the binding site of the ligand. The interpretation of 15N HSQC becomes ambiguous when the chemical shift perturbations are caused by non-specific interactions like allosteric changes and local structural rearrangement. Under such cases, detailed chemical exchange analysis based on chemical shift perturbation will assist in locating the binding site accurately. METHODOLOGY/PRINCIPAL FINDINGS: We have automated the mapping of binding sites for fast chemical exchange systems using information obtained from 15N HSQC spectra of protein serially titrated with ligand of increasing concentrations. The automated program Auto-FACE (Auto-FAst Chemical Exchange analyzer) determines the parameters, e.g. rate of change of perturbation, binding equilibrium constant and magnitude of chemical shift perturbation to map the binding site residues.Interestingly, the rate of change of perturbation at lower ligand concentration is highly sensitive in differentiating the binding site residues from the non-binding site residues. To validate this program, the interaction between the protein hBcl(XL) and the ligand BH3I-1 was studied. Residues in the hydrophobic BH3 binding groove of hBcl(XL) were easily identified to be crucial for interaction with BH3I-1 from other residues that also exhibited perturbation. The geometrically averaged equilibrium constant (3.0 x 10(4)) calculated for the residues present at the identified binding site is consistent with the values obtained by other techniques like isothermal calorimetry and fluorescence polarization assays (12.8 x 10(4)). Adjacent to the primary site, an additional binding site was identified which had an affinity of 3.8 times weaker than the former one. Further NMR based model fitting for individual residues suggest single site model for residues present at these binding sites and two site model for residues present between these sites. This implies that chemical shift perturbation can represent the local binding event much more accurately than the global binding event. CONCLUSION/SIGNIFICANCE: Detail NMR chemical shift perturbation analysis enabled binding site residues to be distinguished from non-binding site residues for accurate mapping of interaction site in complex fast exchange system between small molecule and protein. The methodology is automated and implemented in a program called "Auto-FACE", which also allowed quantitative information of each interaction site and elucidation of binding mechanism.


Subject(s)
Algorithms , Ligands , Magnetic Resonance Spectroscopy/methods , Proteins/chemistry , Binding Sites/genetics , Humans , Kinetics , Models, Chemical , Models, Molecular , Molecular Structure , Protein Binding , Protein Interaction Domains and Motifs , Proteins/genetics , Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Thermodynamics , Thiazoles/chemistry , Thiazolidinediones , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , bcl-X Protein/chemistry , bcl-X Protein/genetics , bcl-X Protein/metabolism
2.
J Mol Biol ; 364(3): 536-49, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17011577

ABSTRACT

The ratio of the levels of pro-survival and pro-apoptotic members of the Bcl-2 protein family is thought to be an important regulatory factor for determining the sensitivity of the mammalian cells to apoptotic stimuli. High levels of expression of pro-survival members such as Bcl(XL) in human cancers were frequently found to be a good prognostic indicator predicting poor response to chemotherapy. The pro-survival members of the Bcl-2 family mediate their effects through heterodimerization with the BH3 region of the pro-apoptotic members. Structural analyses of the binding complex of the BH3 peptide and Bcl(XL) showed that a hydrophobic groove termed the BH3 binding cleft is the docking site for the BH3 region. Chemical mimetics of the BH3 region such as BH3I-1 that target the BH3 binding cleft indeed exhibit pro-apoptotic activities. Chelerythrine (CHE) and sanguinarine (SAN) are natural benzophenanthridine alkaloids that are structurally homologous to each other. CHE was previously identified as an inhibitor of Bcl(XL) function from a high-throughput screen of natural products, but its mode of interaction with Bcl(XL) is not known. By determining the effect of site-directed mutagenesis on ligand binding and using saturation transfer difference (STD) NMR experiments, we have verified locations of these docked ligands. Surprisingly, CHE and SAN bind separately at the BH groove and BH1 region of Bcl(XL) respectively, different from the BH3 binding cleft where other known inhibitors of Bcl(XL) target. Interestingly, certain residues on the flexible loop between helices alpha1 and alpha2 of Bcl(XL) are also perturbed upon CHE, but not SAN or BH3I-1 binding. Although CHE and SAN are similarly effective as BH3I-1 in displacing bound BH3 peptide, they are much more effective in inducing apoptosis, raising the possibility that CHE and SAN might be able to antagonize other pro-survival mechanisms in addition to the one that involves BH3 region binding.


Subject(s)
Alkaloids/chemistry , Benzophenanthridines/chemistry , Isoquinolines/chemistry , Models, Molecular , bcl-X Protein/chemistry , Alkaloids/pharmacology , Amino Acid Motifs , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Benzophenanthridines/pharmacology , Binding Sites , Cell Line, Tumor , Epitope Mapping , Humans , Isoquinolines/pharmacology , Molecular Conformation , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...