Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bioengineered ; 13(1): 1758-1766, 2022 01.
Article in English | MEDLINE | ID: mdl-35034554

ABSTRACT

Asthma is a chronic inflammatory disease of the airways, and IL-35 has been found to be involved in the pathogenesis of inflammatory diseases by mediating the inhibition of effector T cells. But the role of IL-35 on cell pyroptosis, which frequently occurs in inflammatory diseases, has not been elucidated. Therefore, the present study used a TNF-α-induced bronchial epithelial cell injury model to investigate the mechanism of IL-35 action on cell pyroptosis and asthma injury. The effects of IL-35 on cell activity, inflammatory factor levels, cell barrier damage and cell pyroptosis-related proteins were examined by CCK-8, ELISA, lucifer yellow permeability and Western blotting assay, respectively. Subsequently, following the activation of p38 MAPK signaling pathway by adding p38 agonist, the effect of IL-35 on TNF-α-induced bronchial epithelial cell injury was investigated. The results showed that IL-35 reduced TNF-α-induced cell injury, decreased inflammatory factors, improved cell permeability, and inhibited cell pyroptosis. More importantly, the effect of IL-35 on injured cells was reversed after p38 MAPK pathway was activated. In summary, IL-35 inhibited p38 MAPK pathway to suppress cell pyroptosis and thereby reduce asthma injury.


Subject(s)
Bronchi/metabolism , Epithelial Cells/metabolism , Interleukins/metabolism , MAP Kinase Signaling System , Pyroptosis , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Cell Line , Humans
2.
Front Chem ; 7: 339, 2019.
Article in English | MEDLINE | ID: mdl-31139622

ABSTRACT

Tin-based anode materials with high capacity attract wide attention of researchers and become a strong competitor for the next generation of lithium-ion battery anode materials. However, the poor electrical conductivity and severe volume expansion retard the commercialization of tin-based anode materials. Here, SnO2-SnS2@C nanoparticles with heterostructure embedded in a carbon matrix of nitrogen-doped graphene (SnO2-SnS2@C/NG) is ingeniously designed in this work. The composite was synthesized by a two-step method. Firstly, the SnO2@C/rGO with a nano-layer structure was synthesized by hydrothermal method as the precursor, and then the SnO2-SnS2@C/NG composite was obtained by further vulcanizing the above precursor. It should be noted that a carbon matrix with nitrogen-doped graphene can inhibit the volume expansion of SnO2-SnS2 nanoparticles and promote the transport of lithium ions during continuous cycling. Benefiting from the synergistic effect between nanoparticles and carbon matrix with nitrogen-doped graphene, the heterostructured SnO2-SnS2@C/NG further fundamentally confer improved structural stability and reaction kinetics for lithium storage. As expected, the SnO2-SnS2@C/NG composite exhibited high reversible capacity (1201.2 mA h g-1 at the current rate of 0.1 A g-1), superior rate capability and exceptional long-life stability (944.3 mAh g-1 after 950 cycles at the current rate of 1.0 A g-1). The results demonstrate that the SnO2-SnS2@C/NG composite is a highly competitive anode material for LIBs.

3.
Front Chem ; 6: 159, 2018.
Article in English | MEDLINE | ID: mdl-29868562

ABSTRACT

Lithium-rich manganese-based cathode materials has been attracted enormous interests as one of the most promising candidates of cathode materials for next-generation lithium ion batteries because of its high theoretic capacity and low cost. In this study, 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 materials are synthesized through a solid-state reaction by using different lithium sources, and the synthesis process and the reaction mechanism are investigated in detail. The morphology, structure, and electrochemical performances of the material synthesized by using LiOH·H2O, Li2CO3, and CH3COOLi·2H2O have been analyzed by using Thermo gravimetric analysis (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. The 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 material prepared by using LiOH·H2O displays uniform morphology with nano particle and stable layer structure so that it suppresses the first cycle irreversible reaction and structure transfer, and it delivers the best electrochemical performance. The results indicate that LiOH·H2O is the best choice for the synthesis of the 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 material.

4.
Front Chem ; 6: 174, 2018.
Article in English | MEDLINE | ID: mdl-29876346

ABSTRACT

Reduced graphene oxide (rGO) sheet decorated Na3V2(PO4)3 (NVP) microspheres were successfully synthesized by spray-drying method. The NVP microspheres were embedded by rGO sheets, and the surface of the particles were coated by rGO sheets and amorphous carbon. Thus, the carbon conductive network consisted of rGO sheets and amorphous carbon generated in the cathode material. NVP microspheres decorated with different content of rGO (about 0, 4, 8, and 12 wt%) were investigated in this study. The electrochemical performance of NVP exhibited a significant enhancement after rGO introduction. The electrode containing about 8 wt% rGO (NVP/G8) showed the best rate and cycle performance. NVP/G8 electrode exhibited the discharge capacity of 64.0 mAh g-1 at 70°C, and achieved high capacity retention of 95.5% after cycling at 10°C for 100 cycles. The polarization of the electrode was inhibited by the introduction of rGO sheets. Meanwhile, compared with the pristine NVP electrode, NVP/G8 electrode exhibited small resistance and high diffusion coefficient of sodium ions.

5.
ACS Appl Mater Interfaces ; 10(4): 3590-3595, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29356505

ABSTRACT

A novel cathode material, carbon nanotube (CNT)-decorated Na3V2(PO4)3 (NVP) microspheres, was designed and synthesized via spray-drying and carbothermal reduction methods. The microspheres were covered and embedded by CNTs, the surfaces of which were also covered by amorphous carbon layers. Thus, a carbon network composed of CNTs and amorphous carbon layers formed in the materials. The polarization of a 10 wt % CNT-decorated NVP (NVP/C10) electrode was much less compared with that of the electrode with pristine NVP without CNTs. The capacity of the NVP/C10 electrode only decreased from 103.2 to 76.2 mAh g-1 when the current rates increased from 0.2 to 60 C. Even when cycled at a rate of 20 C, the initial discharge capacity of the NVP/C10 electrode was as high as 91.2 mAh g-1, and the discharge capacity was 76.9 mAh g-1 after 150 cycles. The charge-transfer resistance and ohmic resistance became smaller because of CNT decorating. Meanwhile, the addition of CNTs can tune the size of the NVP particles and increase the contact area between NVP and the electrolyte. Consequently, the resulted NVP had a larger sodium ion diffusion coefficient than that of the pristine NVP.

6.
Front Chem ; 6: 629, 2018.
Article in English | MEDLINE | ID: mdl-30619835

ABSTRACT

SnS2 nanosheets/reduced graphene oxide (rGO) composite was prepared by reflux condensation and hydrothermal methods. In this composite, SnS2 nanosheets in-situ grew on the surface of rGO nanosheets. The SnS2/rGO composite as anode material was investigated both in lithium ion battery (LIB) and sodium ion battery (SIB) systems. The capacity of SnS2/rGO electrode in LIB achieved 514 mAh g-1 at 1.2 A g-1 after 300 cycles. Moreover, the SnS2/rGO electrode in SIB delivered a discharge capacity of 645 mAh g-1 at 0.05 A g-1; after 100 cycles at 0.25 A g-1, the capacity retention still keep 81.2% relative to the capacity of the 6th cycle. Due to the introduction of rGO in the composite, the charge-transfer resistance became much smaller. Compared with SnS2/C electrode, SnS2/rGO electrode had higher discharge capacity and much better cycling performance.

7.
Adv Sci (Weinh) ; 3(10): 1600113, 2016 10.
Article in English | MEDLINE | ID: mdl-27840800

ABSTRACT

Carbon nanotubes (CNTs) filled with iron sulfide nanoparticles (NPs) are prepared by inserting sulfur and ferrocene into the hollow core of CNTs followed by heat treatment. It is found that pyrrhotite-11T iron sulfide (Fe-S) NPs with an average size of ≈15 nm are encapsulated in the tubular cavity of the CNTs (Fe-S@CNTs), and each particle is a single crystal. When used as the anode material of lithium-ion batteries, the Fe-S@CNT material exhibits excellent electrochemical lithium storage performance in terms of high reversible capacity, good cyclic stability, and desirable rate capability. In situ transmission electron microscopy studies show that the CNTs not only play an essential role in accommodating the volume expansion of the Fe-S NPs but also provide a fast transport path for Li ions. The results demonstrate that CNTs act as a unique nanocontainer and reactor that permit the loading and formation of electrochemically active materials with desirable electrochemical lithium storage performance. CNTs with their superior structural stability and Li-ion transfer kinetics are responsible for the improved rate capability and cycling performance of Fe-S NPs in CNTs.

8.
Science ; 350(6260): 530-3, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26516278

ABSTRACT

The rechargeable aprotic lithium-air (Li-O2) battery is a promising potential technology for next-generation energy storage, but its practical realization still faces many challenges. In contrast to the standard Li-O2 cells, which cycle via the formation of Li2O2, we used a reduced graphene oxide electrode, the additive LiI, and the solvent dimethoxyethane to reversibly form and remove crystalline LiOH with particle sizes larger than 15 micrometers during discharge and charge. This leads to high specific capacities, excellent energy efficiency (93.2%) with a voltage gap of only 0.2 volt, and impressive rechargeability. The cells tolerate high concentrations of water, water being the dominant proton source for the LiOH; together with LiI, it has a decisive impact on the chemical nature of the discharge product and on battery performance.

9.
Nano Lett ; 15(8): 4922-7, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26114583

ABSTRACT

The hollow core of a carbon nanotube (CNT) provides a unique opportunity to explore the physics, chemistry, biology, and metallurgy of different materials confined in such nanospace. Here, we investigate the nonequilibrium metallurgical processes taking place inside CNTs by in situ transmission electron microscopy using CNTs as nanoscale resistively heated crucibles having encapsulated metal nanowires/crystals in their channels. Because of nanometer size of the system and intimate contact between the CNTs and confined metals, an efficient heat transfer and high cooling rates (∼10(13) K/s) were achieved as a result of a flash bias pulse followed by system natural quenching, leading to the formation of disordered amorphous-like structures in iron, cobalt, and gold. An intermediate state between crystalline and amorphous phases was discovered, revealing a memory effect of local short-to-medium range order during these phase transitions. Furthermore, subsequent directional crystallization of an amorphous iron nanowire formed by this method was realized under controlled Joule heating. High-density crystalline defects were generated during crystallization due to a confinement effect from the CNT and severe plastic deformation involved.

10.
ACS Nano ; 9(5): 5063-71, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25869474

ABSTRACT

Silicon has the highest theoretical lithium storage capacity of all materials at 4200 mAh/g; therefore, it is considered to be a promising candidate as the anode of high-energy-density lithium-ion batteries (LIBs). However, serious volume changes caused by lithium insertion/deinsertion lead to a rapid decay of the performance of the Si anode. Here, a Si nanoparticle (NP)-filled carbon nanotube (CNT) material was prepared by chemical vapor deposition, and a nanobattery was constructed inside a transmission electron microscope (TEM) using the Si NP-filled CNT as working electrode to directly investigate the structural change of the Si NPs and the confinement effect of the CNT during the lithiation and delithiation processes. It is found that the volume expansion (∼180%) of the lithiated Si NPs is restricted by the wall of the CNTs and that the CNT can accommodate this volume expansion without breaking its tubular structure. The Si NP-filled CNTs showed a high reversible lithium storage capacity and desirable high rate capability, because the pulverization and exfoliation of the Si NPs confined in CNTs were efficiently prevented. Our results demonstrate that filling CNTs with high-capacity active materials is a feasible way to make high-performance LIB electrode materials, taking advantage of the unique confinement effect and good electrical conductivity of the CNTs.

12.
ACS Nano ; 8(1): 292-301, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24354297

ABSTRACT

We report a simple, versatile in situ transmission electron microscopy (TEM) approach for investigating the nucleation and growth mechanism of carbon nanotubes (CNTs), by which the composition, phase transition, and physical state of various catalysts can be clearly resolved. In our approach, catalyst nanoparticles (NPs) are placed in a multiwall CNT "tubular furnace" with two open ends, and a high temperature is obtained by Joule heating in the specimen chamber of a TEM. The carbon is supplied by electron irradiation-induced injection of carbon atoms. Comparative studies on the catalytic behavior of traditional iron oxide and recently discovered gold catalysts were performed. It was found that the growth of CNTs from iron oxide involves the reduction of Fe2O3 to Fe3C, nucleation and growth of CNTs from partially liquefied Fe3C, and finally the formation of elemental Fe when the growth stops. In contrast, while changes in shape, size, and orientation were also observed for the fluctuating Au NPs, no chemical reactions or phase transitions occurred during the nucleation of CNTs. These two distinct nucleation and growth processes and mechanisms would be valuable for the structure-controlled growth of CNTs by catalyst design and engineering.

13.
J Am Chem Soc ; 133(2): 197-9, 2011 Jan 19.
Article in English | MEDLINE | ID: mdl-21155566

ABSTRACT

To understand in-depth the nature of the catalyst and the growth mechanism of single-walled carbon nanotubes (SWCNTs) on a newly developed silica catalyst, we performed this combined experimental and theoretical study. In situ transmission electron microscopy (TEM) observations revealed that the active catalyst for the SWCNT growth is solid and amorphous SiO(x) nanoparticles (NPs), suggesting a vapor-solid-solid growth mechanism. From in situ TEM and chemical vapor deposition growth experiments, we found that oxygen plays a crucial role in SWCNT growth in addition to the well-known catalyst size effect. Density functional theory calculations showed that oxygen atoms can enhance the capture of -CH(x) and consequently facilitate the growth of SWCNTs on oxygen-containing SiO(x) NPs.


Subject(s)
Nanotubes, Carbon/chemistry , Oxygen/chemistry , Silicon Dioxide/chemistry , Catalysis , Quantum Theory , Volatilization
14.
Chem Commun (Camb) ; 46(45): 8576-8, 2010 Dec 07.
Article in English | MEDLINE | ID: mdl-20963219

ABSTRACT

Fe(2)O(3) nanoparticles with a mean diameter of ~9 nm were homogeneously filled into the hollow core of high aspect ratio CNTs synthesized by the AAO template method with tunable filling ratios. These Fe(2)O(3)-filled CNTs were employed as the anode material of lithium-ion battery, and desirable electrochemical properties of high reversible lithium storage capacity and good rate capability were demonstrated.

15.
Proc Natl Acad Sci U S A ; 107(20): 9055-9, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20427743

ABSTRACT

Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed.


Subject(s)
Electrodes , Metals/chemistry , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Anisotropy , Electric Conductivity
SELECTION OF CITATIONS
SEARCH DETAIL
...