Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(1): e23361, 2024 01.
Article in English | MEDLINE | ID: mdl-38085152

ABSTRACT

Oocyte meiotic prophase I (MI) is an important event in female reproduction. Breast cancer amplified sequence 2 (BCAS2) is a component of the spliceosome. Previous reports have shown that BCAS2 is critical in male germ cell meiosis, oocyte development, and early embryo genome integrity. However, the role of BCAS2 in oocyte meiosis has not been reported. We used Stra8-GFPCre mice to knock out Bcas2 in oocytes during the pachytene phase. The results of fertility tests showed that Bcas2 conditional knockout (cKO) in oocytes results in infertility in female mice. Morphological analysis showed that the number of primordial follicles in the ovaries of 2-month-old (M) mice was significantly reduced and that follicle development was blocked. Further analysis showed that the number of primordial follicles decreased and that follicle development was slowed in 7-day postpartum (dpp) ovaries. Moreover, primordial follicles undergo apoptosis, and DNA damage cannot be repaired in primary follicle oocytes. Meiosis was abnormal; some oocytes could not reach the diplotene stage, and more oocytes could not develop to the dictyotene stage. Alternative splicing (AS) analysis revealed abnormal AS of deleted in azoospermia like (Dazl) and diaphanous related formin 2 (Diaph2) oogenesis-related genes in cKO mouse ovaries, and the process of AS was involved by CDC5L and PRP19.


Subject(s)
Meiosis , Meiotic Prophase I , Male , Female , Mice , Animals , Meiosis/genetics , Alternative Splicing , RNA, Messenger/metabolism , Oocytes/metabolism , Neoplasm Proteins/metabolism
2.
Cell Mol Life Sci ; 80(11): 343, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907803

ABSTRACT

Granulosa cell abnormalities are characteristics of premature ovarian insufficiency (POI). Abnormal expression of serine/arginine-rich splicing factor 1 (SRSF1) can cause various diseases, but the role of SRSF1 in mouse granulosa cells remains largely unclear. In this study, we found that SRSF1 was expressed in the nuclei of both mouse oocytes and granulosa cells. The specific knockout of Srsf1 in granulosa cells led to follicular development inhibition, decreased granulosa cell proliferation, and increased apoptosis. Gene Ontology (GO) analysis of RNA-seq results revealed abnormal expression of genes involved in DNA repair, cell killing and other signalling pathways. Alternative splicing (AS) analysis showed that SRSF1 affected DNA damage in granulosa cells by regulating genes related to DNA repair. In summary, SRSF1 in granulosa cells controls follicular development by regulating AS of genes associated with DNA repair, thereby affecting female reproduction.


Subject(s)
Alternative Splicing , Granulosa Cells , Animals , Female , Mice , Alternative Splicing/genetics , Granulosa Cells/metabolism , Oocytes/metabolism , RNA, Messenger/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Signal Transduction/genetics
3.
Biochem Pharmacol ; 218: 115872, 2023 12.
Article in English | MEDLINE | ID: mdl-37865142

ABSTRACT

Myasthenia gravis (MG) is a type of autoimmune disease caused by the blockage of neuromuscular junction transmission owing to the attack of autoantibodies on transmission-related proteins. Related antibodies, such as anti-AChR, anti-MuSK and anti-LRP4 antibodies, can be detected in most patients with MG. Although traditional therapies can control most symptoms, several challenges remain to be addressed, necessitating the development of more effective and safe treatment strategies for MG. With the in-depth exploration on the mechanism and immune targets of MG, effective therapies, especially therapies using biologicals, have been reported recently. Given the important roles of immune cells, cytokines and intercellular interactions in the pathological process of MG, B-cell targeted therapy, T-cell targeted therapy, proteasome inhibitors targeting plasma cell, complement inhibitors, FcRn inhibitors have been developed for the treatment of MG. Although these novel therapies exert good therapeutic effects, they may weaken the immunity and increase the risk of infection in MG patients. This review elaborates on the pathogenesis of MG and discusses the advantages and disadvantages of the strategies of traditional treatment and biologicals. In addition, this review emphasises that combined therapy may have better therapeutic effects and reducing the risk of side effects of treatments, which has great prospects for the treatment of MG. With the deepening of research on immunotherapy targets in MG, novel opportunities and challenges in the treatment of MG will be introduced.


Subject(s)
Myasthenia Gravis , Receptor Protein-Tyrosine Kinases , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Myasthenia Gravis/drug therapy , Myasthenia Gravis/diagnosis , Neuromuscular Junction/metabolism , Autoantibodies/metabolism , Immunotherapy
4.
Int J Pharm ; 643: 123251, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37481098

ABSTRACT

Vascular endothelial growth factor (VEGF) is an important factor in the development of some diseases such as tumors, ocular neovascular disease and endometriosis. Inhibition of abnormal VEGF expression is one of the most effective means of treating these diseases. The resistance and side effects of currently used VEGF drugs limit their application. Herein, small interfering RNA for VEGF (siVEGF) are developed to inhibit VEGF expression at the genetic level by means of RNA interference. However, as a foreign substance entering the organism, siVEGF is prone to induce an immune response or mismatch, which adversely affects the organism. It is also subjected to enzymatic degradation and cell membrane blockage, which greatly reduces its therapeutic effect. Targeted siVEGF complexes are constructed by nanocarriers to avoid their clearance by the body and precisely target cells, exerting anti-vascular effects for the treatment of relevant diseases. In addition, some multifunctional complexes allow for the combination of siVEGF with other therapeutic tools to improve the treat efficiency of the disease. Therefore, this review describes the construction of the siVEGF complex, its mechanism of action, application in anti-blood therapy, and provides an outlook on its current problems and prospects.


Subject(s)
Neoplasms , Vascular Endothelial Growth Factor A , Female , Humans , Vascular Endothelial Growth Factor A/genetics , RNA Interference , RNA, Small Interfering , Neoplasms/drug therapy , Neoplasms/genetics
5.
J Neurol ; 270(8): 3733-3749, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37258941

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe, progressive, muscle-wasting disease, characterized by progressive deterioration of skeletal muscle that causes rapid loss of mobility. The failure in respiratory and cardiac muscles is the underlying cause of premature death in most patients with DMD. Mutations in the gene encoding dystrophin result in dystrophin deficiency, which is the underlying pathogenesis of DMD. Dystrophin-deficient myocytes are dysfunctional and vulnerable to injury, triggering a series of subsequent pathological changes. In this review, we detail the molecular mechanism of DMD, dystrophin deficiency-induced muscle cell damage (oxidative stress injury, dysregulated calcium homeostasis, and sarcolemma instability) and other cell damage and dysfunction (neuromuscular junction impairment and abnormal differentiation of muscle satellite). We also describe aberrant function of other cells and impaired muscle regeneration due to deterioration of the muscle microenvironment, and dystrophin deficiency-induced multiple organ dysfunction, while summarizing the recent advances in the treatment of DMD.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Dystrophin/genetics , Muscle, Skeletal , Mutation , Neuromuscular Junction/pathology
6.
Biochem Pharmacol ; 208: 115407, 2023 02.
Article in English | MEDLINE | ID: mdl-36596414

ABSTRACT

Chronic kidney disease (CKD) is a high-risk chronic catabolic disease due to its high morbidity and mortality. CKD is accompanied by many complications, leading to a poor quality of life, and serious complications may even threaten the life of CKD patients. Muscle atrophy is a common complication of CKD. Muscle atrophy and sarcopenia in CKD patients have complex pathways that are related to multiple mechanisms and related factors. This review not only discusses the mechanisms by which inflammation, oxidative stress, mitochondrial dysfunction promote CKD-induced muscle atrophy but also explores other CKD-related complications, such as metabolic acidosis, vitamin D deficiency, anorexia, and excess angiotensin II, as well as other related factors that play a role in CKD muscle atrophy, such as insulin resistance, hormones, hemodialysis, uremic toxins, intestinal flora imbalance, and miRNA. We highlight potential treatments and drugs that can effectively treat CKD-induced muscle atrophy in terms of complication treatment, nutritional supplementation, physical exercise, and drug intervention, thereby helping to improve the prognosis and quality of life of CKD patients.


Subject(s)
Quality of Life , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/therapy , Chronic Disease , Oxidative Stress
7.
Biochem Pharmacol ; 203: 115186, 2022 09.
Article in English | MEDLINE | ID: mdl-35882305

ABSTRACT

The molecular mechanism underlying denervation-induced muscle atrophy is complex and incompletely understood. Our previous results suggested that inflammation may play an important role in the early stages of muscle atrophy. Celecoxib is reported to exert anti-inflammatory effects. Here, we explored the effect of celecoxib on denervation-induced muscle atrophy and sought to identify the mechanism involved. We found that celecoxib treatment significantly increased the wet weight ratio and CSA of the tibialisanteriormuscle. Additionally, celecoxib downregulated the levels of COX-2, inflammatory factors and reduced inflammatory cell infiltration. GO and KEGG pathway enrichment analysis indicated that after 3 days of celecoxib treatment in vivo, the differentially expressed genes (DEGs) were mainly associated with the regulation of immune responses related to complement activation; after 14 days, the DEGs were mainly involved in the regulation of oxidative stress and inflammation-related responses. Celecoxib administration reduced the levels of ROS and oxidative stress-related proteins. Furthermore, we found that celecoxib treatment inhibited the denervation-induced up-regulation of the ubiquitin-proteasome and autophagy-lysosomal systems related proteins; decreased mitophagy in target muscles; and increased levels of MHC. Finally, celecoxib also attenuated microvascular damage in denervated skeletal muscle. Combined, our findings demonstrated that celecoxib inhibits inflammation and oxidative stress in denervated skeletal muscle, thereby suppressing mitophagy and proteolysis, improving blood flow in target muscles, and, ultimately, alleviating denervation-induced muscle atrophy. Our results confirmed that inflammatory responses play a key role in denervation-induced muscle atrophy and highlight a novel strategy for the prevention and treatment of this condition.


Subject(s)
Muscle Denervation , Muscular Atrophy , Celecoxib/pharmacology , Celecoxib/therapeutic use , Humans , Inflammation/metabolism , Microcirculation , Muscle Denervation/methods , Muscle, Skeletal , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...