Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters










Publication year range
1.
Mar Life Sci Technol ; 6(1): 93-101, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38433971

ABSTRACT

The application of chondroitinase requires consideration of the complex microenvironment of the target. Our previous research reported a marine-derived sodium dodecyl sulfate (SDS)-resistant chondroitinase VhChlABC. This study further investigated the mechanism of VhChlABC resistance to SDS. Focusing on the hydrophobic cluster on its strong hydrophilic surface, it was found that the reduction of hydrophobicity of surface residues Ala181, Met182, Met183, Ala184, Val185, and Ile305 significantly reduced the SDS resistance and stability. Molecular dynamics (MD) simulation and molecular docking analysis showed that I305G had more conformational flexibility around residue 305 than wild type (WT), which was more conducive to SDS insertion and binding. The affinity of A181G, M182A, M183A, V185A and I305G to SDS was significantly higher than that of WT. In conclusion, the surface hydrophobic microenvironment composed of six residues was the structural basis for SDS resistance. This feature could prevent the binding of SDS and the destruction of hydrophobic packaging by increasing the rigid conformation of protein and reducing the binding force of SDS-protein. The study provides a new idea for the rational design of SDS-resistant proteins and may further promote chondroitinase research in the targeted therapy of lung diseases under the pressure of pulmonary surfactant. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00201-1.

2.
Life Sci ; 334: 122258, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37949209

ABSTRACT

AIMS AND OBJECTIVES: The aim of this study is to discuss the influence of endotoxin on insulin amyloid formation, to provide guidance for therapeutic insulin preparation and storage. MATERIALS AND METHODS: The ThT and ANS binding assays were applied to characterize the dynamics curve of insulin amyloid formation with the presence or absence of endotoxin. The morphological structures of intermediate and mature insulin fibrils were observed with SEM and TEM. Secondary structural changes of insulin during fibriliation were examined with CD, FTIR and Raman spectral analysis. The cytotoxic effects of oligomeric and amyloidogenic insulin aggregates were detected using a cck-8 cell viability assay kit. The influence of endotoxin on insulin efficacy was analyzed by monitoring the activation of insulin signal transduction. KEY FINDINGS: ThT analysis showed that endotoxin, regardless of species, accelerated insulin fibrils formation in a dose-dependent manner, as observed with a shorter lag phase. ANS binding assay demonstrated endotoxin provoked the exposure of insulin hydrophobic patches. The results of SEM and TEM data displayed that endotoxin drove insulin to cluster into dense and viscous form, with thicker and stronger filaments. Based on CD, FTIR and Raman spectra, endotoxin promoted the transition of α-helix to random coil and ß-strand secondary structures during insulin aggregation. Insulins in both oligomeric and amyloidogenic forms were cytotoxic to HepG2 cells, with the former being more severe. Finally, the efficacy of endotoxin treated insulin obviously decreased. SIGNIFICANCE: Our studies revealed that endotoxin disrupts the structural integrity of insulin and promotes its amyloidosis. These findings offered theoretical guidance for insulin storage and safe utilization, as well as pointing up a new direction for insulin resistance research.


Subject(s)
Amyloidosis , Insulin , Humans , Amyloid/chemistry , Amyloidosis/metabolism , Insulin/metabolism , Protein Structure, Secondary , Signal Transduction , Endotoxins
3.
Mar Drugs ; 21(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37888452

ABSTRACT

Angiogenesis refers to the process of growing new blood vessels from pre-existing capillaries or post-capillary veins. This process plays a critical role in promoting tumorigenesis and metastasis. As a result, developing antiangiogenic agents has become an attractive strategy for tumor treatment. Sirtuin6 (SIRT6), a member of nicotinamide adenine (NAD+)-dependent histone deacetylases, regulates various biological processes, including metabolism, oxidative stress, angiogenesis, and DNA damage and repair. Some SIRT6 inhibitors have been identified, but the effects of SIRT6 inhibitors on anti-angiogenesis have not been reported. We have identified a pyrrole-pyridinimidazole derivative 8a as a highly effective inhibitor of SIRT6 and clarified its anti-pancreatic-cancer roles. This study investigated the antiangiogenic roles of 8a. We found that 8a was able to inhibit the migration and tube formation of HUVECs and downregulate the expression of angiogenesis-related proteins, including VEGF, HIF-1α, p-VEGFR2, and N-cadherin, and suppress the activation of AKT and ERK pathways. Additionally, 8a significantly blocked angiogenesis in intersegmental vessels in zebrafish embryos. Notably, in a pancreatic cancer xenograft mouse model, 8a down-regulated the expression of CD31, a marker protein of angiogenesis. These findings suggest that 8a could be a promising antiangiogenic and cancer therapeutic agent.


Subject(s)
Neoplasms , Sirtuins , Humans , Mice , Animals , Signal Transduction , Neovascularization, Pathologic/metabolism , Zebrafish/metabolism , Neoplasms/drug therapy , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Sirtuins/metabolism , Human Umbilical Vein Endothelial Cells
4.
Artif Cells Nanomed Biotechnol ; 51(1): 509-519, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37695066

ABSTRACT

Helicobacter pylori (H. pylori) is recognized as a pathogen associated with several gastrointestinal diseases. The current treatments exhibit numerous drawbacks, including antibiotic resistance. H. pylori can adhere to and colonize the gastric mucosa through H. pylori adhesin A (HpaA), and antibodies against HpaA may be an effective therapeutic approach. The variable domain of immunoglobulin new antigen receptor (VNAR) is a novel type of single-domain antibody with a small size, good stability, and easy manufacturability. This study isolated VNARs against HpaA from an immune shark VNAR phage display library. The VNARs can bind both recombinant and native HpaA proteins. The VNARs, 2A2 and 3D6, showed high binding affinities to HpaA with different epitopes. Furthermore, homodimeric bivalent VNARs, biNb-2A2 and biNb-3D6, were constructed to enhance the binding affinity. The biNb-2A2 and biNb-3D6 had excellent stability at gastrointestinal pH conditions. Finally, a sandwich ELISA assay was developed to quantify the HpaA protein using BiNb-2A2 as the capture antibody and BiNb-3D6 as the detection antibody. This study provides a potential foundation for novel alternative approaches to treatment or diagnostics applications of H. pylori infection.


Subject(s)
Helicobacter pylori , Sharks , Animals , Antibodies , Enzyme-Linked Immunosorbent Assay , Epitopes
5.
Cell Death Dis ; 14(8): 499, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542062

ABSTRACT

Pancreatic cancer is a highly aggressive cancer, and is primarily treated with gemcitabine, with increasing resistance. SIRT6 as a member of sirtuin family plays important roles in lifespan and diverse diseases, such as cancer, diabetes, inflammation and neurodegenerative diseases. Considering the role of SIRT6 in the cytoprotective effect, it might be a potential anticancer drug target, and is associated with resistance to anticancer therapy. However, very few SIRT6 inhibitors have been reported. Here, we reported the discovery of a pyrrole-pyridinimidazole derivative, 8a, as a new non-competitive SIRT6 inhibitor, and studied its roles and mechanisms in the antitumor activity and sensitization of pancreatic cancer to gemcitabine. Firstly, we found a potent SIRT6 inhibitor compound 8a by virtual screening and identified by molecular and cellular SIRT6 activity assays. 8a could effectively inhibit SIRT6 deacetylation activity with IC50 values of 7.46 ± 0.79 µM in FLUOR DE LYS assay, and 8a significantly increased the acetylation levels of H3 in cells. Then, we found that 8a could inhibit the cell proliferation and induce cell apoptosis in pancreatic cancer cells. We further demonstrate that 8a sensitize pancreatic cancer cells to gemcitabine via reversing the activation of PI3K/AKT/mTOR and ERK signaling pathways induced by gemcitabine and blocking the DNA damage repair pathway. Moreover, combination of 8a and gemcitabine induces cooperative antitumor activity in pancreatic cancer xenograft model in vivo. Overall, we demonstrate that 8a, a novel SIRT6 inhibitor, could be a promising potential drug candidate for pancreatic cancer treatment.


Subject(s)
Pancreatic Neoplasms , Sirtuins , Humans , Apoptosis , Cell Line, Tumor , Gemcitabine , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Pyrroles/pharmacology , Pyrroles/therapeutic use , Sirtuins/metabolism , Xenograft Model Antitumor Assays
6.
Mar Drugs ; 21(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37233490

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that infects patients by regulating virulence factors and biofilms through a quorum sensing (QS) system to protect itself from antibiotics and environmental stress. Therefore, the development of quorum sensing inhibitors (QSIs) is expected to become a new strategy for studying drug resistance to P. aeruginosa infections. Marine fungi are valuable resources for screening QSIs. A marine fungus, Penicillium sp. JH1, with anti-QS activity was isolated from the offshore waters of Qingdao (China), and citrinin, a novel QSI, was purified from secondary metabolites of this fungus. Citrinin could significantly inhibit the production of violacein in Chromobacterium violaceum CV12472 and the production of three virulence factors (elastase, rhamnolipid and pyocyanin) in P. aeruginosa PAO1. It could also inhibit the biofilm formation and motility of PAO1. In addition, citrinin downregulated the transcript levels of nine genes (lasI, rhlI, pqsA, lasR, rhlR, pqsR, lasB, rhlA and phzH) associated with QS. Molecular docking results showed that citrinin bound to PqsR and LasR with better affinity than the natural ligands. This study laid a foundation for the further study of the structure optimization and structure-activity relationship of citrinin.


Subject(s)
Citrinin , Quorum Sensing , Humans , Pseudomonas aeruginosa/physiology , Citrinin/pharmacology , Molecular Docking Simulation , Biofilms , Virulence Factors/metabolism , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism
7.
Front Immunol ; 14: 1062656, 2023.
Article in English | MEDLINE | ID: mdl-36855630

ABSTRACT

Introduction: O-GlcNAcylation is a type of reversible post-translational modification on Ser/Thr residues of intracellular proteins in eukaryotic cells, which is generated by the sole O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA). Thousands of proteins, that are involved in various physiological and pathological processes, have been found to be O-GlcNAcylated. However, due to the lack of favorable tools, studies of the O-GlcNAcylation and OGT were impeded. Immunoglobulin new antigen receptor (IgNAR) derived from shark is attractive to research tools, diagnosis and therapeutics. The variable domain of IgNARs (VNARs) have several advantages, such as small size, good stability, low-cost manufacture, and peculiar paratope structure. Methods: We obtained shark single domain antibodies targeting OGT by shark immunization, phage display library construction and panning. ELISA and BIACORE were used to assess the affinity of the antibodies to the antigen and three shark single-domain antibodies with high affinity were successfully screened. The three antibodies were assessed for intracellular function by flow cytometry and immunofluorescence co-localization. Results: In this study, three anti-OGT VNARs (2D9, 3F7 and 4G2) were obtained by phage display panning. The affinity values were measured using surface plasmon resonance (SPR) that 2D9, 3F7 and 4G2 bound to OGT with KD values of 35.5 nM, 53.4 nM and 89.7 nM, respectively. Then, the VNARs were biotinylated and used for the detection and localization of OGT by ELISA, flow cytometry and immunofluorescence. 2D9, 3F7 and 4G2 were exhibited the EC50 values of 102.1 nM, 40.75 nM and 120.7 nM respectively. VNAR 3F7 was predicted to bind the amino acid residues of Ser375, Phe377, Cys379 and Tyr 380 on OGT. Discussion: Our results show that shark single-domain antibodies targeting OGT can be used for in vitro detection and intracellular co-localization of OGT, providing a powerful tool for the study of OGT and O-GlcNAcylation.


Subject(s)
Single-Domain Antibodies , Antibodies , Acetylglucosaminidase , Amino Acids
8.
Molecules ; 27(9)2022 May 02.
Article in English | MEDLINE | ID: mdl-35566248

ABSTRACT

A high enzyme-yield strain Yersinia sp. 298 was screened from marine bacteria harvested from the coastal water. The screening conditions were extensive, utilizing hyaluronic acid (HA)/chondroitin sulfate (CS) as the carbon source. A coding gene yshyl8A of the family 8 polysaccharide lyase (PL8) was cloned from the genome of Yersinia sp. 298 and subjected to recombinant expression. The specific activity of the recombinase YsHyl8A was 11.19 U/mg, with an optimal reaction temperature of 40 °C and 50% of its specific activity remaining after thermal incubation at 30 °C for 1 h. In addition, its optimal reaction pH was 7.5, and while it was most stable at pH 6.0 in Na2HPO4-citric acid buffer, it remained highly stable at pH 6.0-11.0. Further, its enzymatic activity was increased five-fold with 0.1 M NaCl. YsHyl8A, as an endo-lyase, can degrade both HA and CS, producing disaccharide end-products. These properties suggested that YsHyl8A possessed both significant alkalophilic and cold-adapted features while being dependent on NaCl, likely resulting from its marine source. Yersinia is a typical fish pathogen, with glycosaminoglycan lyase (GAG lyase) as a potential pathogenic factor, exhibiting strong hyaluronidase and chondroitinase activity. Further research on the pathogenic mechanism of GAG lyase may benefit the prevention and treatment of related diseases.


Subject(s)
Glycosaminoglycans , Lyases , Animals , Chondroitin Sulfates , Hyaluronic Acid/chemistry , Hydrogen-Ion Concentration , Polysaccharide-Lyases/chemistry , Sodium Chloride , Yersinia/genetics , Yersinia/metabolism
9.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563187

ABSTRACT

Alginate lyase has received extensive attention as an important tool for oligosaccharide preparation, pharmaceutical production, and energy biotransformation. Noncatalytic module carbohydrate-binding modules (CBM) have a major impact on the function of alginate lyases. Although the effects of two different families of CBMs on enzyme characteristics have been reported, the effect of two combined CBM32s on enzyme function has not been elucidated. Herein, we cloned and expressed a new multimodular alginate lyase, VxAly7C, from Vibrioxiamenensis QY104, consisting of two CBM32s at N-terminus and a polysaccharide lyase family 7 (PL7) at C-terminus. To explore the function of CBM32s in VxAly7C, full-length (VxAly7C-FL) and two truncated mutants, VxAly7C-TM1 (with the first CBM32 deleted) and VxAly7C-TM2 (with both CBM32s deleted), were characterized. The catalytic efficiency of recombinant VxAly7C-TM2 was 1.82 and 4.25 times higher than that of VxAly7C-TM1 and VxAly7C-FL, respectively, indicating that CBM32s had an antagonistic effect. However, CBM32s improved the temperature stability, the adaptability in an alkaline environment, and the preference for polyG. Moreover, CBM32s contributed to the production of tri- and tetrasaccharides, significantly affecting the end-product distribution. This study advances the understanding of module function and provides a reference for broader enzymatic applications and further enzymatic improvement and assembly.


Subject(s)
Alginates , Polysaccharide-Lyases , Alginates/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Oligosaccharides/metabolism , Polysaccharide-Lyases/metabolism , Substrate Specificity , Vibrio
10.
Mar Drugs ; 20(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35323467

ABSTRACT

Marine macroalgae, contributing much to the bioeconomy, have inspired tremendous attention as sustainable raw materials. Ulvan, as one of the main structural components of green algae cell walls, can be degraded by ulvan lyase through the ß-elimination mechanism to obtain oligosaccharides exhibiting several good physiological activities. Only a few ulvan lyases have been characterized until now. This thesis explores the properties of a new polysaccharide lyase family 25 ulvan lyase TsUly25B from the marine bacterium Thalassomonas sp. LD5. Its protein molecular weight was 54.54 KDa, and it was most active under the conditions of 60 °C and pH 9.0. The Km and kcat values were 1.01 ± 0.05 mg/mL and 10.52 ± 0.28 s-1, respectively. TsUly25B was salt-tolerant and NaCl can significantly improve its thermal stability. Over 80% of activity can be preserved after being incubated at 30 °C for two days when the concentration of NaCl in the solution is above 1 M, while 60% can be preserved after incubation at 40 °C for 10 h with 2 M NaCl. TsUly25B adopted an endolytic manner to degrade ulvan polysaccharides, and the main end-products were unsaturated ulvan disaccharides and tetrasaccharides. In conclusion, our research enriches the ulvan lyase library and advances the utilization of ulvan lyases in further fundamental research as well as ulvan oligosaccharides production.


Subject(s)
Bacterial Proteins , Gammaproteobacteria/enzymology , Polysaccharide-Lyases , Polysaccharides/chemistry , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Escherichia coli/genetics , Gammaproteobacteria/genetics , Molecular Conformation , Phylogeny , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/isolation & purification , Recombinant Proteins/chemistry , Sodium Chloride/chemistry
11.
Enzyme Microb Technol ; 154: 109952, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34871823

ABSTRACT

Glycosaminoglycan lyase is an effective tool for the functional studies of glycosaminoglycans and for the preparation of oligosaccharides. In this study, a new glycosaminoglycan lyase HCLaseV with a molecular weight of 90 kDa was cloned, expressed, and characterized from Vibrio sp. H240. The lyase belonged to the polysaccharide lyase (PL)- 8 family. HCLaseV showed enzyme activities toward chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, and hyaluronic acid. HCLaseV exhibited the highest activity against HA at pH 7.0 and 40 °C. HCLaseV was an endo-type enzyme whose degradation end-product was unsaturated disaccharides. Ca2+ inhibited the activity of HCLaseV to a certain extent, which was different from most of the enzymes in the PL-8 family. Mutagenesis studies showed that the Ca2+ inhibition might be related to the Asn244 residue. The sequence homology was evaluated by mutagenesis studies, and the catalytic residues in HCLaseV were presumed to be His278, Trp485, and Tyr287. These characteristics are helpful for further basic research and application.


Subject(s)
Lyases , Vibrio , Cloning, Molecular , Glycosaminoglycans , Polysaccharide-Lyases/genetics , Vibrio/genetics
12.
Int J Biol Macromol ; 194: 50-57, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34863832

ABSTRACT

A new α-agarase AgaE belonging to glycoside hydrolase (GH) family 96 was identified and cloned from marine bacterium Thalassomonas sp. LD5. AgaE consists of 926 amino acids with a theoretical molecular mass of 97 kDa. The optimum temperature and pH for recombinant AgaE were 35 °C and 7.0, respectively. In contrast to known α-agarases, the activity of AgaE does not depend on Ca2+, but on Na+. Thin-layer chromatography and 13C NMR analysis revealed that AgaE endohydrolytic of agarose to produce agarotetraose and agarohexaose as the final main products. Extensive site-directed mutagenesis studies on the conserved carboxylic amino acids of GH96 revealed two essential amino acids for AgaE, D779 and D781. Replacing D779 with G779 leads to complete inactivation of the enzyme, while D781G results in 70% loss of activity. Later studies showed that site D781 involved in the binding of Na+, and its mutation raised the optimal concentration of Na+ 4 times higher than that of the wild type. However, attempts to rescue the mutant's activities with sodium azide were failed. Kinetic parameters comparison of AgaE, AgaD, another α-agarase from LD5, and their mutants revealed that the former aspartic acid plays critical role in the catalysis.


Subject(s)
Amino Acids, Essential , Gammaproteobacteria/enzymology , Glycoside Hydrolases/chemistry , Amino Acid Sequence , Amino Acids , Catalysis , Gammaproteobacteria/genetics , Glycoside Hydrolases/genetics , Hydrolysis , Recombinant Proteins , Spectrum Analysis
13.
Mar Drugs ; 21(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36662179

ABSTRACT

Alginate oligosaccharides (AOS) and their derivatives become popular due to their favorable biological activity, and the key to producing functional AOS is to find efficient alginate lyases. This study showed one alginate lyase TsAly7A found in Thalassomonas sp. LD5, which was predicted to have excellent industrial properties. Bioinformatics analysis and enzymatic properties of recombinant TsAly7A (rTsAly7A) were investigated. TsAly7A belonged to the fifth subfamily of polysaccharide lyase family 7 (PL7). The optimal temperature and pH of rTsAly7A was 30 °C and 9.1 in Glycine-NaOH buffer, respectively. The pH stability of rTsAly7A under alkaline conditions was pretty good and it can remain at above 90% of the initial activity at pH 8.9 in Glycine-NaOH buffer for 12 h. In the presence of 100 mM NaCl, rTsAly7A showed the highest activity, while in the absence of NaCl, 50% of the highest activity was observed. The rTsAly7A was an endo-type alginate lyase, and its end-products of alginate degradation were unsaturated oligosaccharides (degree of polymerization 2-6). Collectively, the rTsAly7A may be a good industrial production tool for producing AOS with high degree of polymerization.


Subject(s)
Alginates , Gammaproteobacteria , Polymerization , Alginates/metabolism , Sodium Chloride , Sodium Hydroxide , Hydrogen-Ion Concentration , Oligosaccharides/chemistry , Polysaccharide-Lyases/metabolism , Gammaproteobacteria/metabolism , Substrate Specificity , Bacterial Proteins/metabolism
14.
Molecules ; 26(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34641440

ABSTRACT

Quorum sensing (QS) is employed by the opportunistic pathogen Pseudomonas aeruginosa to regulate physiological behaviors and virulence. QS inhibitors (QSIs) are potential anti-virulence agents for the therapy of P. aeruginosa infection. During the screening for QSIs from Chinese herbal medicines, falcarindiol (the major constituent of Notopterygium incisum) exhibited QS inhibitory activity. The subinhibitory concentration of falcarindiol exerted significant inhibitory effects on the formation of biofilm and the production of virulence factors such as elastase, pyocyanin, and rhamnolipid. The mRNA expression of QS-related genes (lasB, phzH, rhlA, lasI, rhlI, pqsA, and rhlR) was downregulated by falcarindiol while that of lasR was not affected by falcarindiol. The transcriptional activation of the lasI promoter was inhibited by falcarindiol in the P. aeruginosa QSIS-lasI selector. Further experiments confirmed that falcarindiol inhibited the las system using the reporter strain Escherichia coli MG4/pKDT17. Electrophoretic mobility shift assay (EMSA) showed that falcarindiol inhibited the binding of the transcription factor LasR and the lasI promoter region. Molecular docking showed that falcarindiol interacted with the Tyr47 residue, leading to LasR instability. The decrease of LasR-mediated transcriptional activation was responsible for the reduction of downstream gene expression, which further inhibited virulence production. The inhibition mechanism of falcarindiol to LasR provides a theoretical basis for its medicinal application.


Subject(s)
Apiaceae/chemistry , Diynes/pharmacology , Fatty Alcohols/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Quorum Sensing , Diynes/isolation & purification , Fatty Alcohols/isolation & purification , Phytochemicals/isolation & purification
15.
Mar Drugs ; 19(7)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34356824

ABSTRACT

Chondroitinases, catalyzing the degradation of chondroitin sulfate (CS) into oligosaccharides, not only play a crucial role in understanding the structure and function of CS, but also have been reported as a potential candidate drug for the treatment of high CS-related diseases. Here, a marine bacterium Vibrio hyugaensis LWW-1 was isolated, and its genome was sequenced and annotated. A chondroitinase, VhChlABC, was found to belong to the second subfamily of polysaccharide lyase (PL) family 8. VhChlABC was recombinant expressed and characterized. It could specifically degrade CS-A, CS-B, and CS-C, and reached the maximum activity at pH 7.0 and 40 °C in the presence of 0.25 M NaCl. VhChlABC showed high stability within 8 h under 37 °C and within 2 h under 40 °C. VhChlABC was stable in a wide range of pH (5.0~10.6) at 4 °C. Unlike most chondroitinases, VhChlABC showed high surfactant tolerance, which might provide a good tool for removing extracellular CS proteoglycans (CSPGs) of lung cancer under the stress of pulmonary surfactant. VhChlABC completely degraded CS to disaccharide by the exolytic mode. This research expanded the research and application system of chondroitinases.


Subject(s)
Chondroitinases and Chondroitin Lyases/chemistry , Surface-Active Agents/chemistry , Vibrio , Animals , Aquatic Organisms
16.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34445107

ABSTRACT

Brown algae is a kind of renewable resource for biofuels production. As the major component of carbohydrate in the cell walls of brown algae, alginate can be degraded into unsaturated monosaccharide by exo-type alginate lyases, then converted into 4-deoxy-L-erythro-5-hexoseulose uronate (DEH) by a non-enzyme reaction, which is an important raw material for the preparation of bioethanol. In our research, a novel exo-type alginate lyase, VsAly7D, belonging to the PL7 family was isolated from marine bacterium Vibrio sp. QY108 and recombinantly expressed in Escherichia coli. The purified VsAly7D demonstrated the highest activity at 35 °C, whereas it still maintained 46.5% and 83.1% of its initial activity at 20 °C and 30 °C, respectively. In addition, VsAly7D exhibited the maximum activity under alkaline conditions (pH 8.0), with the simultaneously remaining stability between pH 8.0 and 10.0. Compared with other reported exo-type enzymes, VsAly7D could efficiently degrade alginate, poly-ß-D-mannuronate (polyM) and poly-α-L-guluronate (polyG) with highest specific activities (663.0 U/mg, 913.6 U/mg and 894.4 U/mg, respectively). These results showed that recombinant VsAly7D is a suitable tool enzyme for unsaturated alginate monosaccharide preparation and holds great promise for producing bioethanol from brown algae.


Subject(s)
Alginates/metabolism , Polysaccharide-Lyases/metabolism , Vibrio/metabolism , Amino Acid Sequence , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Glucuronic Acid/metabolism , Hydrogen-Ion Concentration , Monosaccharides/metabolism , Phaeophyceae/microbiology
17.
Front Microbiol ; 12: 696096, 2021.
Article in English | MEDLINE | ID: mdl-34177877

ABSTRACT

Hyaluronic acid (HA) is a negatively charged and linear polysaccharide existing in the tissues and body fluids of all vertebrates. Some pathogenic bacteria target hyaluronic acid for adhesion and/or infection to host cells. Vibrio alginolyticus is an opportunistic pathogen related to infections of humans and marine animals, and the hyaluronic acid-degrading potential of Vibrio spp. has been well-demonstrated. However, little is known about how Vibrio spp. utilize hyaluronic acid. In this study, a marine bacterium V. alginolyticus LWW-9 capable of degrading hyaluronic acid has been isolated. Genetic and bioinformatic analysis showed that V. alginolyticus LWW-9 harbors a gene cluster involved in the degradation, transport, and metabolism of hyaluronic acid. Two novel PL8 family hyaluronate lyases, VaHly8A and VaHly8B, are the key enzymes for the degradation of hyaluronic acid. VaHly8A and VaHly8B have distinct biochemical properties, reflecting the adaptation of the strain to the changing parameters of the aquatic habitats and hosts. Based on genomic and functional analysis, we propose a model for the complete degradation of hyaluronic acid by V. alginolyticus LWW-9. Overall, our study expands our knowledge of the HA utilization paradigm within the Proteobacteria, and the two novel hyaluronate lyases are excellent candidates for industrial applications.

18.
Chem Biodivers ; 18(6): e2100270, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33890414

ABSTRACT

Amylin (hIAPP) amyloid formation plays an important role in the pathogenesis of type 2 diabetes (T2D), which makes it a promising therapeutic target for T2D. In this study, we established a screening tool for identifying chemicals affecting hIAPP amyloid formation based on a reported genetic tool, which constantly tracks protein aggregates in Saccharomyces cerevisiae. In order to obtain the hIAPP with better aggregation ability, the gene of hIAPP was tandemly ligated to create 1×, 2×, 4× or 6×-hIAPP expressing strains. By measuring the cell density and fluorescence intensity of green fluorescent protein (GFP) regulated by the aggregation status of hIAPP, it was found that four intramolecular ligated hIAPP (4×hIAPP) could form obvious amyloids with mild toxicity. The validity and reliability of the screening tool were verified by testing six reported hIAPP inhibitors, including curcumin, epigallocatechin gallate and so on. Combined with surface plasmon resonance (SPR) and the screening tool, which could be a screening system for hIAPP inhibitors, we found that crocin specifically binds to hIAPP and acts inhibit amyloid formation of hIAPP. The effect of crocin was further confirmed by Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) analysis. Thus, a screening system for hIAPP amyloid inhibitors and a new mechanism of crocin on anti-T2D were obtained as a result of this study.


Subject(s)
Carotenoids/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Islet Amyloid Polypeptide/antagonists & inhibitors , Protein Aggregation, Pathological/drug therapy , Carotenoids/chemistry , Diabetes Mellitus, Type 2/metabolism , Drug Evaluation, Preclinical , Humans , Hypoglycemic Agents/chemistry , Islet Amyloid Polypeptide/metabolism , Protein Aggregation, Pathological/metabolism
19.
Protein Expr Purif ; 182: 105840, 2021 06.
Article in English | MEDLINE | ID: mdl-33561520

ABSTRACT

Hyaluronate lyases have received extensive attention due to their applications in medical science, drug and biochemical engineering. However, few thermotolerant and pH-stable hyaluronate lyases have been found. In this study, hyaluronate lyase TcHly8B from Thermasporomyces composti DSM22891 was expressed in Escherichia coli BL21(DE3), purified, and characterized. Phylogenetic analysis revealed that TcHly8B belonged to a new subfamily in PL8. The molecular mass of recombinant TcHly8B determined by SDS-PAGE was approximately 86 kDa. The optimal temperature of TcHly8B was 70 °C, which was higher than that of previously reported hyaluronate lyases. TcHly8B was very stable at temperatures from 0 to 60 °C. The optimal pH of TcHly8B was 6.6. It could retain more than 80% of its original enzyme activity after incubation for 12 h in the pH range of 3.0-10.6. TcHly8B degraded hyaluronic acid into unsaturated disaccharides as the end products. The amino acid sequence and structure analysis of TcHly8B demonstrated that the amino acid composition and salt bridges might contribute to the thermostability of TcHly8B. Overall, this study provides an excellent example for the discovery of thermotolerant hyaluronate lyases and can be applied to the industrialized production and basic research of hyaluronate oligosaccharides.


Subject(s)
Actinobacteria , Bacterial Proteins , Polysaccharide-Lyases , Actinobacteria/enzymology , Actinobacteria/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Polysaccharide-Lyases/biosynthesis , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
20.
Exp Ther Med ; 21(2): 107, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33335570

ABSTRACT

Eugenol is a naturally occurring compound that is present in a variety of plants and has previous been demonstrated to exert a number of bioactivities. However, the potential effects of Eugenol on cellular protection against oxidative stress remain poorly understood. In the present study, HEK-293 cells and the mouse fibroblast cell line NIH-3T3 cells were used as models to explore the effects of eugenol on H2O2-induced damage. Among the three natural compounds tested, namely eugenol, methyleugenol and acetyleugenol, eugenol was found to increase the transcriptional activity and expression level of nuclear factor erythroid 2-related factor 2 (Nrf2), a central regulator of cellular responses to oxidative stress, in a dose-dependent manner. The mRNA levels of Nrf2 target genes glutamate-cysteine ligase modifier regulatory subunit and glutathione S-transferase A1, were also found to be upregulated following eugenol treatment. Further study revealed that eugenol enhanced the stabilization and nuclear translocation of Nrf2. Additionally, treatment with eugenol was found to reduce intracellular ROS levels while increasing cellular resistance to H2O2, in a manner that was dependent on Nrf2. In conclusion, data from the present study suggest that eugenol is a protective agent against oxidative stress that exerts its effects through a Nrf2-dependent pathway, rendering eugenol and its derivatives to be promising candidates for the future development of antioxidants.

SELECTION OF CITATIONS
SEARCH DETAIL
...