Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
Food Res Int ; 186: 114379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729702

ABSTRACT

The relationship between the chemical composition and quality of Lushan Yunwu tea (LYT) from different geographical origins is not clear. Sensory evaluation, metabolomics analyses combined with chemometrics were conducted on LYT from 8 different geographical origins, and altitude was identified as the main factor responsible for the differences among LYT. A total of 32 non-volatile and 27 volatile compounds were identified as marker metabolites to distinguish the origins of high altitudes from those of low altitudes. LYT samples from higher altitude areas contained more free amino acids, sugars, and organic acids, and less catechins, which may contribute to the reduction of bitterness and astringency and the enhancement of umami. The contents of geranylacetone, ethyl hexanoate, ethyl caprylate, 3-carene, d-cadinene, linalool, nerol, and nerolidol in high altitude areas were higher than those in low altitude areas, indicating that LYT from high altitude had strong floral and fruity aroma. The altitudes were positively correlated with pH value, total flavonoids, soluble protein, total free amino acids, and the antioxidant capacities of the LYT. This study provided a theoretical basis for the study of the effect of altitude on tea quality.


Subject(s)
Altitude , Metabolomics , Tea , Volatile Organic Compounds , Tea/chemistry , Volatile Organic Compounds/analysis , Humans , Odorants/analysis , Taste , Antioxidants/analysis , Camellia sinensis/chemistry , Amino Acids/analysis , Flavonoids/analysis , Male , China , Female
2.
Theriogenology ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38821784

ABSTRACT

Decreased oocyte quality is a significant contributor to the decline in female fertility that accompanies aging in mammals. Oocytes rely on mRNA stores to support their survival and integrity during the protracted period of transcriptional dormancy as they await ovulation. However, the changes in mRNA levels and interactions that occur during porcine oocyte maturation and aging remain unclear. In this study, the mRNA expression profiles of porcine oocytes during the GV, MII, and aging (24 h after the MII stage) stages were explored by transcriptome sequencing to identify the key genes and pathways that affect oocyte maturation and postovulatory aging. The results showed that 10,929 genes were coexpressed in porcine oocytes during the GV stage, MII stage, and aging stage. In addition, 3037 genes were expressed only in the GV stage, 535 genes were expressed only in the MII stage, and 120 genes were expressed only in the aging stage. The correlation index between the GV and MII stages (0.535) was markedly lower than that between the MII and aging stages (0.942). A total of 3237 genes, which included 1408 upregulated and 1829 downregulated genes, were differentially expressed during porcine oocyte postovulatory aging (aging stage vs. MII stage). Key functional genes, including ATP2A1, ATP2A3, ATP2B2, NDUFS1, NDUFA2, NDUFAF3, SREBF1, CYP11A1, CYP3A29, GPx4, CCP110, STMN1, SPC25, Sirt2, SYCP3, Fascin1/2, PFN1, Cofilin, Tmod3, FLNA, LRKK2, CHEK1/2, DDB1/2, DDIT4L, and TONSL, and key molecular pathways, such as the calcium signaling pathway, MAPK signaling pathway, TGF-ß signaling pathway, PI3K/Akt signaling pathway, FoxO signaling pathway, gap junctions, and thermogenesis, were found in abundance during porcine postovulatory aging. These genes are mainly involved in the regulation of many biological processes, such as oxidative stress, calcium homeostasis, mitochondrial function, and lipid peroxidation, during porcine oocyte postovulatory aging. These results contribute to a more in-depth understanding of the biological changes, key regulatory genes and related biological pathways that are involved in oocyte aging and provide a theoretical basis for improving the efficiency of porcine embryo production in vitro and in vivo.

3.
Int J Biol Macromol ; 270(Pt 1): 132209, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729471

ABSTRACT

Recently, the chitosan (CS)-based composites have attracted increasing attention for controlling and preventing the spread of pathogenic microorganisms. Herein, an amphiphilic copolymer containing epoxy and quaternary ammonium groups (PBGDBr) was synthesized via three common acrylate monomers. The epoxy groups of this copolymer were then crosslinked with the amino groups of CS to synthesize a natural/synthetic (PBGDBr-C) composite to increase the water solubility of CS under alkaline conditions and enhance its antibacterial activity based on chemical contact-type modes. Moreover, silver bromide nanoparticles (AgBr NPs)-decorated PBGDBr-C (AgBr@PBGDBr-C) composite was prepared, which aimed to endow the final AgBr@PBGDBr-C composite with a photodynamic antibacterial mode relying on the formation of Ag/AgBr nanostructures catalyzed by visible light on AgBr NPs. The results showed that the final composite possessed satisfactory bactericidal effects at concentrations higher than 64 and 128 µg/mL against Escherichia coli and Staphylococcus aureus, respectively. Additionally, The L929 cells treated with the final composite retained high cell viability (>80 %) at a concentration of 128 µg/mL, indicating its low toxicity to L929 cells. Overall, our synthetic strategy exploits a multi-modal system that enables chemical-photodynamic synergies to treat infections caused by pathogenic bacteria while delaying the development of bacterial resistance.


Subject(s)
Anti-Bacterial Agents , Bromides , Chitosan , Escherichia coli , Silver Compounds , Staphylococcus aureus , Chitosan/chemistry , Chitosan/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Bromides/chemistry , Bromides/pharmacology , Silver Compounds/chemistry , Silver Compounds/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Polymers/chemistry , Polymers/pharmacology , Mice , Cations/chemistry , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Animals , Cell Survival/drug effects , Cell Line
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124526, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38810434

ABSTRACT

Petroleum hydrocarbon (PHC) contamination in soils is considered one of the most serious problems currently, of which the detection and identification is a fairly significant but challenging work. Conventional methods to do such work usually need complex sample pretreatment, consume much time and fail to do the in-situ detection. This paper set out to create a novel systematic methodology to realize the goals accurately and efficiently. Based on laser-induced breakdown spectroscopy (LIBS) and self-improved machine learning methods, the innovative methodology only uses extremely simple devices to do the real-time in situ detection and identification work and even realize the quantitative analysis of pollution level accurately. In the study, clean soils mixed with petroleum were served as polluted samples, clean soils to be the blank group for comparison. Based on the elemental information from the spectra obtained by LIBS, machine learning methods were improved and helped optimized the algorithm to identify the PHC polluted soil samples for the first time. Furthermore, a novel model was designed to perform the quantitative analysis of the concentration of PHC pollution in soils, which can be applied to detect the degree of PHC contamination in soils accurately. Finally, the harmful volatile component of the PHC polluted soils was also successfully and identified despite its extremely minimal content in the air. The newly-designed methodology is novel and efficient, which has extensive application prospect in the real-time in situ detection of petroleum hydrocarbon pollution.

5.
J Clin Invest ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743489

ABSTRACT

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), a multiorgan disease that exhibits diverse metabolic defects. However, other than specific CFTR mutations, the factors that influence disease progression and severity remain poorly understood. Aberrant metabolite levels have been reported, but whether CFTR loss itself or secondary abnormalities (infection, inflammation, malnutrition, and various treatments) drive metabolic defects are uncertain. Here, we implemented comprehensive arteriovenous metabolomics in newborn CF pigs, and the results revealed CFTR as a bona fide regulator of metabolism. CFTR loss impaired metabolite exchange across organs, including disrupted lung uptake of fatty acids yet enhanced uptake of arachidonic acid, a precursor of pro-inflammatory cytokines. CFTR loss also impaired kidney reabsorption of amino acids and lactate and abolished renal glucose homeostasis. These and additional unexpected metabolic defects prior to disease manifestations reveal a fundamental role for CFTR in controlling multi-organ metabolism. Such discovery informs a basic understanding of CF, provides a foundation for future investigation, and has implications for developing therapies targeting only a single tissue.

6.
Metabolism ; 155: 155911, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609037

ABSTRACT

BACKGROUND: The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing year by year and has become one of the leading causes of end-stage liver disease worldwide. Triggering Receptor Expressed on Myeloid Cells 2 (Trem2) has been confirmed to play an essential role in the progression of MASLD, but its specific mechanism still needs to be clarified. This study aims to explore the role and mechanism of Trem2 in MASLD. METHODS: Human liver tissues were obtained from patients with MASLD and controls. Myeloid-specific knockout mice (Trem2mKO) and myeloid-specific overexpression mice (Trem2TdT) were fed a high-fat diet, either AMLN or CDAHFD, to establish the MASLD model. Relevant signaling molecules were assessed through lipidomics and RNA-seq analyses after that. RESULTS: Trem2 is upregulated in human MASLD/MASH-associated macrophages and is associated with hepatic steatosis and inflammation progression. Hepatic steatosis and inflammatory responses are exacerbated with the knockout of myeloid Trem2 in MASLD mice, while mice overexpressing Trem2 exhibit the opposite phenomenon. Mechanistically, Trem2mKO can aggravate macrophage pyroptosis through the PI3K/AKT signaling pathway and amplify the resulting inflammatory response. At the same time, Trem2 promotes the inflammation resolution phenotype transformation of macrophages through TGFß1, thereby promoting tissue repair. CONCLUSIONS: Myeloid Trem2 ameliorates the progression of Metabolic dysfunction-associated steatotic liver disease by regulating macrophage pyroptosis and inflammation resolution. We believe targeting myeloid Trem2 could represent a potential avenue for treating MASLD.


Subject(s)
Disease Progression , Fatty Liver , Inflammation , Macrophages , Membrane Glycoproteins , Mice, Knockout , Pyroptosis , Receptors, Immunologic , Animals , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice , Humans , Macrophages/metabolism , Inflammation/metabolism , Inflammation/pathology , Pyroptosis/physiology , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/genetics , Male , Mice, Inbred C57BL , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Metabolic Diseases/genetics , Liver/metabolism , Liver/pathology
7.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674037

ABSTRACT

Ovule abortion significantly contributes to a reduction in chestnut yield. Therefore, an examination of the mechanisms underlying ovule abortion is crucial for increasing chestnut yield. In our previous study, we conducted a comprehensive multiomic analysis of fertile and abortive ovules and found that ACS genes in chestnuts (CmACS) play a crucial role in ovule development. Therefore, to further study the function of ACS genes, a total of seven CmACS members were identified, their gene structures, conserved structural domains, evolutionary trees, chromosomal localization, and promoter cis-acting elements were analyzed, and their subcellular localization was predicted and verified. The spatiotemporal specificity of the expression of the seven CmACS genes was confirmed via qRT-PCR analysis. Notably, CmACS7 was exclusively expressed in the floral organs, and its expression peaked during fertilization and decreased after fertilization. The ACC levels remained consistently greater in fertile ovules than in abortive ovules. The ACSase activity of CmACS7 was identified using the genetic transformation of chestnut healing tissue. Micro Solanum lycopersicum plants overexpressing CmACS7 had a significantly greater rate of seed failure than did wild-type plants. Our results suggest that ovule fertilization activates CmACS7 and increases ACC levels, whereas an overexpression of CmACS7 leads to an increase in ACC content in the ovule prior to fertilization, which can lead to abortion. In conclusion, the present study demonstrated that chestnut ovule abortion is caused by poor fertilization and not by nutritional competition. Optimization of the pollination and fertilization of female flowers is essential for increasing chestnut yield and reducing ovule abortion.


Subject(s)
Fagaceae , Gene Expression Regulation, Plant , Ovule , Plant Proteins , Ovule/genetics , Ovule/growth & development , Ovule/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Fagaceae/genetics , Fagaceae/growth & development , Fagaceae/metabolism , Multigene Family , Genome, Plant , Phylogeny , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism
8.
Sci Rep ; 14(1): 9511, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664449

ABSTRACT

It is important to study the bacteria that cause endometritis to identify effective therapeutic drugs for dairy cows. In this study, 20% oxytetracycline was used to treat Holstein cows (n = 6) with severe endometritis. Additional 10 Holstein cows (5 for healthy cows, 5 for cows with mild endometritis) were also selected. At the same time, changes in bacterial communities were monitored by high-throughput sequencing. The results show that Escherichia coli, Staphylococcus aureus and other common pathogenic bacteria could be detected by traditional methods in cows both with and without endometritis. However, 16S sequencing results show that changes in the abundance of these bacteria were not significant. Endometritis is often caused by mixed infections in the uterus. Oxytetracycline did not completely remove existing bacteria. However, oxytetracycline could effectively inhibit endometritis and had a significant inhibitory effect on the genera Bacteroides, Trueperella, Peptoniphilus, Parvimonas, Porphyromonas, and Fusobacterium but had no significant inhibitory effect on the bacterial genera Marinospirillum, Erysipelothrix, and Enteractinococcus. During oxytetracycline treatment, the cell motility, endocrine system, exogenous system, glycan biosynthesis and metabolism, lipid metabolism, metabolism of terpenoids, polyketides, cofactors and vitamins, signal transduction, and transport and catabolism pathways were affected.


Subject(s)
Anti-Bacterial Agents , Endometritis , Oxytetracycline , Uterus , Oxytetracycline/pharmacology , Oxytetracycline/therapeutic use , Animals , Female , Cattle , Endometritis/microbiology , Endometritis/veterinary , Endometritis/drug therapy , Uterus/microbiology , Uterus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cattle Diseases/microbiology , Cattle Diseases/drug therapy , RNA, Ribosomal, 16S/genetics , Microbiota/drug effects
9.
Bioresour Technol ; 402: 130729, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657826

ABSTRACT

Low efficiency of the cultivation process is a major obstacle in the commercial production of Haematococcus pluvialis. Germination of red, non-motile cells is an efficient strategy for rapid acquisition of zoospores. However, the regulatory mechanisms associated with germination remain unexplored. In the present study, it was confirmed that the mitochondrial alternative oxidase (AOX) pathway accelerates H. pluvialis cell germination, and the regulatory mechanisms were clarified. When the AOX pathway was inhibited, the transcriptomic and metabonomic data revealed a downregulation in respiratory carbon metabolism and nucleotide synthesis due to NADH accumulation. This observation suggested that AOX promoted the rapid consumption of NADH, which accelerated carbohydrate and lipid catabolism, thereby producing carbon skeletons for DNA replication through respiratory metabolism. Moreover, AOX could potentially enhance germination by disturbing the abscisic acid signaling pathway. These findings provide novel insights for developing industrial cultivation models based on red-cell-germination for achieving rapid proliferation of H. pluvialis.


Subject(s)
Carbon , Mitochondria , Mitochondrial Proteins , Oxidation-Reduction , Oxidoreductases , Plant Proteins , Oxidoreductases/metabolism , Carbon/metabolism , Plant Proteins/metabolism , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Chlorophyta/metabolism , Chlorophyceae/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , NAD/metabolism , Cell Respiration/physiology
10.
Aesthetic Plast Surg ; 48(6): 1104-1110, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38315230

ABSTRACT

BACKGROUND: With an increasing number of East Asians undergoing blepharoplasty, the number of patients with secondary upper eyelid deformities is increasing. The sunken eyelid deformity is a common deformity after upper blepharoplasty in Asians due to over-resection, retraction, or atrophy of the nasal and central orbital fat pads. Herein, we present a novel procedure, the pendulum movement of orbital fat and retro-orbicularis oculi fat ("POR" technique), for correction of sunken eyelid deformity in secondary Asian blepharoplasty. METHODS: Patients who underwent secondary upper blepharoplasty with the POR technique by the senior author between January 2020 and October 2021 were identified retrospectively. Those with fewer than 6 months of follow-up were excluded. Patient charts and images were reviewed for demographic data, comorbidities, concomitant eyelid deformities, and postoperative complications. Pre- and postoperative aesthetics, including degree of sunken eyelid deformity, were assessed by two independent raters and by self-reported patient satisfaction. RESULTS: Forty-nine consecutive patients were identified, all of whom were female and had grade I or II sunken eyelid deformity. Median follow-up was 8 months. Concomitant deformities included high tarsal crease (N = 31 patients, 63.3%), ptosis (N = 13, 26.5%), and upper eyelid retraction (N = 5, 10.2%). Almost patients had improvement in their eyelid volume, and 95.9% had improvement in their aesthetic rating. Approximately 93.9% of patients were satisfied with the outcome. CONCLUSIONS: The POR technique is an effective technique for correction of sunken eyelid deformity and can be utilized in conjunction with other techniques during secondary blepharoplasty. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Blepharoplasty , Eyelids , Female , Humans , Adipose Tissue/transplantation , Asian People , Blepharoplasty/methods , Eyelids/surgery , Eyelids/abnormalities , Retrospective Studies
11.
Proc Natl Acad Sci U S A ; 121(10): e2318771121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38416686

ABSTRACT

Apical cilia on epithelial cells defend the lung by propelling pathogens and particulates out of the respiratory airways. Ciliated cells produce ATP that powers cilia beating by densely grouping mitochondria just beneath the apical membrane. However, this efficient localization comes at a cost because electrons leaked during oxidative phosphorylation react with molecular oxygen to form superoxide, and thus, the cluster of mitochondria creates a hotspot for oxidant production. The relatively high oxygen concentration overlying airway epithelia further intensifies the risk of generating superoxide. Thus, airway ciliated cells face a unique challenge of producing harmful levels of oxidants. However, surprisingly, highly ciliated epithelia produce less reactive oxygen species (ROS) than epithelia with few ciliated cells. Compared to other airway cell types, ciliated cells express high levels of mitochondrial uncoupling proteins, UCP2 and UCP5. These proteins decrease mitochondrial protonmotive force and thereby reduce production of ROS. As a result, lipid peroxidation, a marker of oxidant injury, decreases. However, mitochondrial uncoupling proteins exact a price for decreasing oxidant production; they decrease the fraction of mitochondrial respiration that generates ATP. These findings indicate that ciliated cells sacrifice mitochondrial efficiency in exchange for safety from damaging oxidation. Employing uncoupling proteins to prevent oxidant production, instead of relying solely on antioxidants to decrease postproduction oxidant levels, may offer an advantage for targeting a local area of intense ROS generation.


Subject(s)
Ion Channels , Superoxides , Humans , Reactive Oxygen Species/metabolism , Mitochondrial Uncoupling Proteins/metabolism , Superoxides/metabolism , Ion Channels/metabolism , Oxidative Stress , Adenosine Triphosphate/metabolism , Epithelial Cells/metabolism , Oxidants/pharmacology , Oxygen/metabolism , Mitochondrial Proteins/metabolism
12.
Molecules ; 29(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38257221

ABSTRACT

Chelating agents are commonly employed in microelectronic processes to prevent metal ion contamination. The ligand fragments of a chelating agent largely determine its binding strength to metal ions. Identification of ligands with suitable characteristics will facilitate the design of chelating agents to enhance the capture and removal of metal ions from the substrate in microelectronic processes. This study employed quantum chemical calculations to simulate the binding process between eleven ligands and the hydrated forms of Ni2+, Cu2+, Al3+, and Fe3+ ions. The binding strength between the metal ions and ligands was quantified using binding energy and binding enthalpy. Additionally, we explored the binding interaction mechanisms and explained the differences in binding abilities of the eleven ligands using frontier molecular orbitals, nucleophilic indexes, electrostatic potentials, and energy decomposition calculations based on molecular force fields. Based on our computational results, promising chelating agent structures are proposed, aiming to guide the design of new chelating agents to address metal ion contamination issues in integrated circuit processes.

13.
Food Chem ; 441: 138280, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38176139

ABSTRACT

In this study, waxy corn starch (WCS) was modified by amylosucrase and pullulanase, producing linear starch chains with elongated length that favored the complexation with unsaturated fatty acids (uFAs). Compared to native WCS, the amylosucrase-modified WCS with an average chain length of 47.8 was easier to form V-type complexes with oleic acid, while increasing the degree of unsaturation impeded the formation of V-type complexes. The pullulanase treatment hydrolyzed the branching points of amylosucrase-modified WCS and the linear starch chains could forme V-type complexes with oleic acid, linoleic acid, and linolenic acid, with V-type crystallinity decreasing from 38.2 % to 20.1 %. V-type complexes had a lower thermal stability than the B-type starch crystallites, and their peak melting temperature ranged from 67.2 to 79.0 °C. The content of resistant starch in the complexes was in the range of 21.8 %-40.9 % and the formation of V-type complexes decreased the susceptibility of uFAs to oxygen.


Subject(s)
Amylopectin , Starch , Starch/chemistry , Amylopectin/chemistry , Fatty Acids, Unsaturated , Temperature , Oleic Acid , Zea mays/chemistry , Fatty Acids
14.
Food Chem ; 441: 138388, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38219368

ABSTRACT

Streptococcus pyogenes (GAS) is one of the most virulent and infectious bacteria, severely threatening health and lives of people worldwide. Honey has been proven to have effective capability against GAS, but the underlying metabolites and mechanisms are still unclear. In this study, the Castanopsis honey (CH) showed significant antibacterial ability compared to other seven kinds of honey and artificial honey. Furthermore, the antibacterial metabolites and their targets in CH were screened by combined method of metabolomics, network pharmacology, and molecular docking. The results suggested that the activities of two antioxidant enzymes, glutathione peroxidase and tyrosyl tRNA synthetase identified as the primary targets, were significantly inhibited by CH, which significantly increased the level of oxidative stress in GAS. The results revealed a possibly novel mechanism regulating the oxidative stress and inhibits the growth in bacteria, providing strong experimental evidence to support the further development of CH as a novel antibacterial agent.


Subject(s)
Honey , Streptococcus pyogenes , Humans , Network Pharmacology , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Metabolomics
15.
Nanomaterials (Basel) ; 14(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38202582

ABSTRACT

Polyamines have become important chemical components used in several integrated circuit manufacturing processes, such as etching, chemical mechanical polishing (CMP), and cleaning. Recently, researchers pointed out that polyamines can be excellent enhancers in promoting the material removal rate (MRR) of Si CMP, but the interaction mechanism between the polyamines and the silicon surface has not been clarified. Here, the micro-interaction mechanisms of polyamines, including ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA), with the Si(1, 0, 0) surface were investigated through molecular dynamics (MD) simulations using the ReaxFF reactive force field. Polyamines can adsorb onto the Si(1, 0, 0) surface, and the adsorption rate first accelerates and then tends to stabilize with the increase in the quantity of -CH2CH2NH-. The close connection between the adsorption properties of polyamines and the polishing rate has been confirmed by CMP experiments on silicon wafers. A comprehensive bond analysis indicates that the adsorption of polyamines can stretch surface Si-Si bonds, which facilitates subsequent material removal by abrasive mechanical wear. This work reveals the adsorption mechanism of polyamines onto the silicon substrate and the understanding of the MRR enhancement in silicon CMP, which provides guidance for the design of CMP slurry.

16.
Cell Mol Gastroenterol Hepatol ; 17(1): 149-169, 2024.
Article in English | MEDLINE | ID: mdl-37717824

ABSTRACT

BACKGROUND & AIMS: Hepatic ischemia-reperfusion injury is a significant complication of partial hepatic resection and liver transplantation, impacting the prognosis of patients undergoing liver surgery. The protein proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily synthesized by hepatocytes and has been implicated in myocardial ischemic diseases. However, the role of PCSK9 in hepatic ischemia-reperfusion injury remains unclear. This study aims to investigate the role and mechanism of PCSK9 in hepatic ischemia-reperfusion injury. METHODS: We first examined the expression of PCSK9 in mouse warm ischemia-reperfusion models and AML12 cells subjected to hypoxia/reoxygenation. Subsequently, we explored the impact of PCSK9 on liver ischemia-reperfusion injury by assessing mitochondrial damage and the resulting inflammatory response. RESULTS: Our findings reveal that PCSK9 is up-regulated in response to ischemia-reperfusion injury and exacerbates hepatic ischemia-reperfusion injury. Blocking PCSK9 can alleviate hepatocyte mitochondrial damage and the consequent inflammatory response mediated by ischemia-reperfusion. Mechanistically, this protective effect is dependent on mitophagy. CONCLUSIONS: Inhibiting PCSK9 in hepatocytes attenuates the inflammatory responses triggered by reactive oxygen species and mitochondrial DNA by promoting PINK1-Parkin-mediated mitophagy. This, in turn, ameliorates hepatic ischemia-reperfusion injury.


Subject(s)
Liver Diseases , Reperfusion Injury , Animals , Humans , Mice , Disease Models, Animal , Hepatocytes/metabolism , Mitophagy/genetics , Proprotein Convertase 9 , Protein Kinases/genetics , Reperfusion Injury/metabolism , Ubiquitin-Protein Ligases/metabolism
17.
Plant Physiol ; 194(4): 2387-2399, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38114094

ABSTRACT

There are many factors that affect the yield of Chinese chestnut (Castanea mollissima), with single nut weight (SNW) being one of the most important. Leaf length is also related to Chinese chestnut yield. However, the genetic architecture and gene function associated with Chinese chestnut nut yield have not been fully explored. In this study, we performed genotyping by sequencing 151 Chinese chestnut cultivars, followed by a genome-wide association study (GWAS) on six horticultural traits. First, we analyzed the phylogeny of the Chinese chestnut and found that the Chinese chestnut cultivars divided into two ecotypes, a northern and southern cultivar group. Differences between the cultivated populations were found in the pathways of plant growth and adaptation to the environment. In the selected regions, we also found interesting tandemly arrayed genes that may influence Chinese chestnut traits and environmental adaptability. To further investigate which horticultural traits were selected, we performed a GWAS using six horticultural traits from 151 cultivars. Forty-five loci that strongly associated with horticultural traits were identified, and six genes highly associated with these traits were screened. In addition, a candidate gene associated with SNW, APETALA2 (CmAP2), and another candidate gene associated with leaf length (LL), CRYPTOCHROME INTERACTING BASIC HELIX-LOOP-HELIX 1 (CmCIB1), were verified in Chinese chestnut and Arabidopsis (Arabidopsis thaliana). Our results showed that CmAP2 affected SNW by negatively regulating cell size. CmCIB1 regulated the elongation of new shoots and leaves by inducing cell elongation, potentially affecting photosynthesis. This study provided valuable information and insights for Chinese chestnut breeding research.


Subject(s)
Genome-Wide Association Study , Plant Breeding , Genes, Plant/genetics , Plant Leaves/genetics , China
18.
Food Chem ; 440: 138040, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38103505

ABSTRACT

The quality of beef is usually predicted by measuring a single index rather than a comprehensive index. To precisely determine the essential amino acid (EAA) contents in 360 beef samples, the feasibility of optimized spectral detection techniques based on the comprehensive EAA index (CEI) and comprehensive weight index (CWI) constructed by factor analysis was explored. Two-dimensional correlation spectroscopy (2D-COS) was used to analyse the mechanisms of spectral peak shifts in complex disturbance systems with CEI and CWI contents, and 15 sensitive feature variables were extracted to establish a quantitative analysis model of a long short-term memory network (LSTM). The results indicated that 2D-COS had good predictive performance in both CEI-LSTM (R2P of 0.9095 and RPD of 2.76) and CWI-LSTM (R2P of 0.8449 and RPD of 2.45), which reduced data information by 88%. This indicates that utilizing 2D-COS can eliminate collinearity and redundant information among variables while achieving data dimensionality reduction and simplification of calibration models. Furthermore, a spatial distribution map of the comprehensive EAA content was generated by combining the optimal prediction model. This study demonstrated that the comprehensive index method furnishes a new approach to rapidly evaluate EAA content.


Subject(s)
Hyperspectral Imaging , Spectroscopy, Near-Infrared , Animals , Cattle , Spectroscopy, Near-Infrared/methods , Least-Squares Analysis , Calibration
19.
Am J Cancer Res ; 13(11): 5513-5530, 2023.
Article in English | MEDLINE | ID: mdl-38058845

ABSTRACT

Due to its heterogeneous nature, head and neck squamous cell carcinoma (HNSC) had the worst prognosis. Hence, there is an urgent need to develop novel diagnostic and prognostic models for effective disease management. A multi-layer dry-lab and wet-lab methodologies were adopted in the present study to identify novel diagnostic and prognostic biomarkers of HNSC. Initially, the GSE6631 gene microarray HNSC dataset was retrieved from the Gene Expression Omnibus (GEO) database. The R language-based "limma" package was employed to identify differentially expressed genes (DEGs) between HNSC and control samples. The Cytohubba plug-in software was used to identify the top four hub genes based on the degree score method. The Cancer Genome Atlas (TCGA) datasets, Gene Expression Omnibus (GEO) datasets, clinical HNSC tissue samples, HNSC cell line (FaDu), and normal cell line (HOK) were used to validate the expressions of hub genes. Moreover, additional bioinformatics analyses were performed to further evaluate the mechanisms of hub genes in the development of HNSC. In total, 1372 reliable DEGs were screened from the GSE6631 dataset. Out of these DEGs, only based on the four up-regulated hub genes, including UBE2C (Ubiquitin-conjugating enzyme E2C), BUB1B (BUB1 Mitotic Checkpoint Serine/Threonine Kinase B), MCM4 (Minichromosome Maintenance Complex Component 4), and KIF23 (Kinesin family member 23), we developed and validated a diagnostic and prognostic model for HNSC patients. Moreover, some interesting correlations observed between hub gene expression and infiltration level of immune cells may also improve our understanding of HNSC immunotherapy. In conclusion, we developed a novel diagnostic and prognostic model consisting of the UBE2C, BUB1B, MCM4, and KIF23 genes for HNSC patients. However, the efficiency of this model needs to be verified through more experimental studies.

20.
Front Microbiol ; 14: 1326253, 2023.
Article in English | MEDLINE | ID: mdl-38143868

ABSTRACT

Tropical Asian collections of Inosperma are usually poisonous mushrooms that have caused many poisoning incidents. However, the species diversity and the toxic mechanisms of these Inosperma species are still unclear. In this study, we describe the discovery of Inosperma wuzhishanense sp. nov. from Wuzhishan City, Hainan Province, tropical China. The new species was identified based on morphological and multi-locus (ITS, nrLSU, and RPB2) phylogenetic analyses. The new species is characterized by its reddish-brown pileus, fibrillose stipes with finely protruding fibrils, rather crowded lamellae, smooth and ellipsoid basidiospores, and mostly clavate, thin-walled cheilocystidia. The new species is phylogenetically nested in the Old World tropical clade 2 and is sister to the tropical Indian taxa I. akirnum. Detailed descriptions, color photos of the new species, and comparisons with its closely related species are provided. Additionally, the muscarine content of the new species was analyzed by ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). The muscarine contents ranged from 4,359.79 ± 83.87 mg/kg to 7,114.03 ± 76.55 mg/kg, 2,748.37 ± 106.85 mg/kg to 4,491.35 ± 467.21 mg/kg, and 2,301.36 ± 83.52 mg/kg to 2,775.90 ± 205.624 mg/kg in the stipe, pileus, and lamellae, respectively. The elemental composition and concentration were determined using inductively coupled plasma-mass spectrometry (ICP-MS). A total of 24 elements were detected. Among the heavy metals detected, arsenic showed the highest level of toxicity with a concentration of 36.76 ± 0.43 mg/kg.

SELECTION OF CITATIONS
SEARCH DETAIL
...