Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 86(1): 460-473, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35596751

ABSTRACT

Reasonable fertilization management can increase nutrient content and enzyme activity in rhizosphere soil, and even increase soil microbial richness. However, different fertilizers could raise distinct influences on the soil properties, including soil environmental factors (physicochemical properties and enzymatic activities) and microbial community. Here, the effects of two soil amendments (microbial fertilizer and woody peat) on environmental factors and microbial community structure in tobacco rhizosphere soil were evaluated, with the correlations between microbes and environmental factors explored. As the results, microbial fertilizer could effectively alleviate soil acidification, increase available potassium and organic matter contents in soil, and was also beneficial to increase nitrate reductase activity in rhizosphere soil. Fertilizers cause changes in the abundance of certain microbes in the soil. Besides, it was shown that the candidate phyla Gal15, Acidobacterota, Latescibacterota, Mortierellommycota, Basidiomycota, and Rozellomycota in tobacco rhizosphere soil had significant correlation with soil environmental factors. Through the functional analysis of these populations, it can be deduced that the changes in the abundance of certain microorganisms may be an important reason for the differences in environmental factors. All these indicated that the differences of environmental factors in different treatments are closely related to the abundance of some special soil microorganisms. Studying the life activities of these microbes would provide good guidance for exploring the interaction among crops, soil, and microorganisms and improving crop yields.


Subject(s)
Fertilizers , Soil , Soil/chemistry , Fertilizers/analysis , Nicotiana , Rhizosphere , Soil Microbiology
2.
Environ Pollut ; 206: 652-60, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26319510

ABSTRACT

LSER models for organic compounds adsorption by single and multi-walled carbon nanotubes and activated carbon were successfully developed. The cavity formation and dispersion interactions (vV), hydrogen bond acidity interactions (bB) and π-/n-electron interactions (eE) are the most influential adsorption mechanisms. SWCNTs is more polarizable, less polar, more hydrophobic, and has weaker hydrogen bond accepting and donating abilities than MWCNTs and AC. Compared with SWCNTs and MWCNTs, AC has much less hydrophobic and less hydrophilic adsorption sites. The regression coefficients (e, s, a, b, v) vary in different ways with increasing chemical saturation. Nonspecific interactions (represented by eE and vV) have great positive contribution to organic compounds adsorption, and follow the order of SWCNTs > MWCNTs > AC, while hydrogen bond interactions (represented by aA and bB) demonstrate negative contribution. These models will be valuable for understanding adsorption mechanisms, comparing adsorbent characteristics, and selecting the proper adsorbents for certain organic compounds.


Subject(s)
Charcoal/chemistry , Models, Theoretical , Nanotubes, Carbon/chemistry , Organic Chemicals/chemistry , Adsorption , Electrons , Hydrophobic and Hydrophilic Interactions , Linear Models
SELECTION OF CITATIONS
SEARCH DETAIL
...