Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Int J Gen Med ; 17: 1789-1805, 2024.
Article in English | MEDLINE | ID: mdl-38711823

ABSTRACT

Purpose: This study focuses on evaluating the prognostic value of the NDC80 kinetochore complex in ovarian cancer (OC) using the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database and reveals the relationship between the NDC80 complex and immune infiltrates in OC. Methods: We collected data on NDC80 complex expression levels in both OC tissues and non-OC ovarian tissues from the University of California Santa Cruz Xena and GEO databases. The clinicopathological characteristics correlated with overall survival were analyzed using Cox regression and the Kaplan-Meier method. Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, gene set enrichment analysis and CIBERSORT were performed using data from TCGA database. Immunohistochemical staining was used to verify the higher expression level of NUF2 protein in OC in vitro. Meanwhile, we utilized the Tumor Immune Estimation Resource to analyze the correlation between the NDC80 complex and immunocyte infiltration. Results: The NDC80 complex expression level was prominently higher in OC tissues than in non-OC ovarian tissues and correlated with advanced histologic grade characteristics. Gene expression profiling interactive analysis and the Kaplan-Meier survival curve uncovered a close relationship between high expression of the NDC80 complex and poor overall survival in OC patients. The univariate Cox regression hazard model produced age, pathologic stage, tumor status, primary therapy outcome, SPC24 expression level, and Karnofsky performance score as prognostic factors for OC patients. NDC80 complex expression levels were highly associated with immune cell infiltration, showing NK CD56 bright cells and NK cells with a negative correlation and T helper 2 cells with a positive correlation (P<0.05). Conclusion: These findings provide evidence that an increased expression level of the NDC80 complex is closely associated with the progression of OC and could also serve as a novel target of immunotherapy in OC.

2.
Int J Environ Health Res ; : 1-9, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753525

ABSTRACT

Circadian rhythm (24-hour period of physiological and behavioral changes) is the basis of the overall health, including mood and health. This study aimed to explore the influence of circadian rhythm and sleep schedules on depressive symptoms in Chinese adolescents. In this cross-sectional study, 841 middle school students were recruited and divided into two groups (depressive group, DG, n = 210, and control group, n = 631) depending on the total score of The Center for Epidemiological Studies Depression Scale for Children (CES-DC). The circadian rhythm and sleep quality among adolescents were evaluated by using the Biological Rhythms Interview of Assessment in Neuropsychiatry (BRIAN) and Self-rating scale of Sleep (SRSS) scales. Furthermore, correlation analysis and logistic regression analysis were used to determine the effects of demographic factors, sleeping arrangement, sleep quality, and circadian rhythm on depressive symptoms. The DG group's CES-DC, BRIAN and SRSS scores were significantly higher than the control group's. Higher scores of BRIAN and SRSS were risk factors for depressive symptoms in Chinese adolescents. Attending a day school and waking up later on weekends may be weak protective factors. Our results suggest that circadian rhythm disturbance, sleep quality, and sleeping arrangement have a significant influence on depressive symptoms among adolescents in China.

3.
Front Microbiol ; 15: 1361117, 2024.
Article in English | MEDLINE | ID: mdl-38601932

ABSTRACT

Tricholoma bakamatsutake is a delicious and nutritious ectomycorrhizal fungus. However, its cultivation is hindered owing to limited studies on its symbiotic relationships. The symbiotic relationship between T. bakamatsutake and its host is closely related to the shiro, a complex network composed of mycelium, mycorrhizal roots, and surrounding soil. To explore the symbiotic relationship between T. bakamatsutake and its host, soil samples were collected from T. bakamatsutake shiro (Tb) and corresponding Q. mongolica rhizosphere (CK) in four cities in Liaoning Province, China. The physicochemical properties of all the soil samples were then analyzed, along with the composition and function of the fungal and bacterial communities. The results revealed a significant increase in total potassium, available nitrogen, and sand in Tb soil compared to those in CK soil, while there was a significant decrease in pH, total nitrogen, total phosphorus, available phosphorus, and silt. The fungal community diversity in shiro was diminished, and T. bakamatsutake altered the community structure of its shiro by suppressing other fungi, such as Russula (ectomycorrhizal fungus) and Penicillium (phytopathogenic fungus). The bacterial community diversity in shiro increased, with the aggregation of mycorrhizal-helper bacteria, such as Paenibacillus and Bacillus, and plant growth-promoting bacteria, such as Solirubrobacter and Streptomyces, facilitated by T. bakamatsutake. Microbial functional predictions revealed a significant increase in pathways associated with sugar and fat catabolism within the fungal and bacterial communities of shiro. The relative genetic abundance of carboxylesterase and gibberellin 2-beta-dioxygenase in the fungal community was significantly increased, which suggested a potential symbiotic relationship between T. bakamatsutake and Q. mongolica. These findings elucidate the microbial community and relevant symbiotic environment to better understand the relationship between T. bakamatsutake and Q. mongolica.

4.
Neuron ; 112(9): 1498-1517.e8, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38430912

ABSTRACT

Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.


Subject(s)
Empathy , Sex Characteristics , Animals , Male , Female , Mice , Empathy/physiology , Piriform Cortex/physiology , Piriform Cortex/metabolism , Cues , Mice, Inbred C57BL , Affect/physiology , Neurons/physiology , Neurons/metabolism , Behavior, Animal/physiology
5.
Environ Int ; 185: 108563, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38461776

ABSTRACT

BACKGROUND: Pregnant women in the Shanghai Birth Cohort (SBC) of China faced dual threats of per- and polyfluoroalkyl substances (PFAS) exposure and vitamin D (VD) insufficiency, potentially impacting offspring neurodevelopment. However, little is known about whether maternal VD status modifies PFAS-related neurodevelopment effect. OBJECTIVES: To explore the modifying role of maternal VD status in the effect of prenatal PFAS exposure on childhood neurodevelopment. METHODS: We included 746 mother-child pairs from the SBC. Ten PFAS congeners and VD levels were measured in maternal blood samples collected during the first and second trimester respectively. At 2 years of age, toddlers underwent neurodevelopment assessments using Bayley-III Scales. Multivariate linear, logistic regression, and weighted quantile sum approach were used to estimate associations of Bayley-III scores with individual and mixture PFAS. We stratified participants into VD sufficient and insufficient groups and further balanced PFAS differences between these groups by matching all PFAS levels. We fitted the same statistical models in each VD group before and after matching. RESULTS: Nearly half (46.5 %) of pregnant women were VD insufficient (<30 ng/mL). In the overall population, PFAS exposure was associated with lower language scores and an increased risk for neurodevelopmental delay, but higher cognitive scores. However, adverse associations with PFAS were mainly observed in the VD sufficient group, while the VD insufficient group showed positive cognitive score associations. Higher PFAS concentrations were found in the VD sufficient group compared to the VD insufficient group. Post-matching, adverse associations in the VD sufficient group were nullified, whereas in the VD insufficient group, positive associations disappeared and adverse associations becoming more pronounced. CONCLUSION: In this Chinese birth cohort, high prenatal PFAS exposure and low maternal VD levels collectively heighten the risk of adverse childhood neurodevelopment. However, disentangling PFAS and VD interrelationships is crucial to avoid paradoxical findings.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Child, Preschool , Child , Prenatal Exposure Delayed Effects/epidemiology , Vitamin D , Fluorocarbons/toxicity , China/epidemiology , Vitamins , Environmental Pollutants/adverse effects
6.
Heliyon ; 10(4): e25298, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370222

ABSTRACT

-Equipping lithium-ion batteries with a reasonable thermal fault diagnosis can avoid thermal runaway and ensure the safe and reliable operation of the batteries. This research built a lithium-ion battery thermal fault diagnosis model that optimized the original mask region-based convolutional neural network based on the battery dataset in both parameters and structure. The model processes the thermal images of the battery surface, identifies problematic batteries, and locates the problematic regions. A backbone network is used to process the battery thermal images and extract feature information. Through the RPN network, the thermal feature is classified and regressed, and the Mask branch is used to ultimately determine the faulty battery's location. Additionally, we have optimized the original mask region-based convolutional neural network based on the battery dataset in both parameters and structure. The improved LBIP-V2 performs better than LBIP-V1 in most cases. We tested the performance of LBIP on the single-cell battery dataset, the 1P3S battery pack dataset, and the flattened 1P3S battery pack dataset. The results show that the recognition accuracy of LBIP exceeded 95 %. At the same time, we simulated the failure of the 1P3S battery pack within 0-15 min and tested the effectiveness of LBIP in real-time battery fault diagnosis. The results indicate that LBIP can effectively respond to online faults with a confidence level of over 98 %.

7.
Gene ; 909: 148265, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38346459

ABSTRACT

MicroRNAs (miRNAs) have emerged as important regulators of gene expression, and the deregulation of their activity has been linked to the onset and progression of a variety of human malignancies. Among these miRNAs, miR-136-5p has attracted significant attention due to its diverse roles in cancer biology. Mostly, miR-136-5p is downregulated in malignancies. It could inhibit viability, proliferation, migration, invasion and promote apoptosis of tumor cells. This review article provides a comprehensive overview of the current understanding of miR-136-5p in different sorts of human cancers: genital tumors, head and neck tumors, tumors from the digestive and urinary systems, skin cancers, neurologic tumors, pulmonary neoplasms and other cancers by discussing its molecular mechanisms, functional roles, and impact in chemotherapies. In conclusion, miR-136-5p could be a promising new biomarker and potential clinical therapeutic target.


Subject(s)
Head and Neck Neoplasms , MicroRNAs , Humans , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Head and Neck Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Cell Movement/genetics
8.
Bioorg Chem ; 144: 107090, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218070

ABSTRACT

Clinical experiences of herbal medicine (HM) have been used to treat a variety of human intractable diseases. As the treatment of diseases using HM is characterized by multi-components and multi-targets, it is difficult to determine the bio-active components, explore the molecular targets and reveal the mechanisms of action. Metabolomics is frequently used to characterize the effect of external disturbances on organisms because of its unique advantages on detecting changes in endogenous small-molecule metabolites. Its systematicity and integrity are consistent with the effective characteristics of HM. After HM intervention, metabolomics can accurately capture and describe the behavior of endogenous metabolites under the disturbance of functional compounds, which will be used to decode the bioactive ingredients of HM and expound the molecular targets. Metabolomics can provide an approach for explaining HM, addressing unclear clinical efficacy and undefined mechanisms of action. In this review, the metabolomics strategy and its applications in HM are systematically introduced, which offers valuable insights for metabolomics methods to characterizing the pharmacological effects and molecular targets of HM.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Humans , Drugs, Chinese Herbal/pharmacology , Metabolomics/methods
9.
Sci Total Environ ; 915: 170095, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38224892

ABSTRACT

OBJECTIVE: The fetal brain is particularly plastic, and may be concurrently affected by chemical exposure and malnutritional factors. Selenium is essential for the developing brain, and excess manganese exposure may exert neurotoxic effects. However, few epidemiological studies have evaluated the interaction of manganese and selenium assessed in different prenatal stages on postnatal neurodevelopmental trajectories. METHODS: This study contained 1024 mother-child pairs in the Shanghai-birth-cohort study from 2013 to 2016 recruited since early/before pregnancy with complete data on manganese and selenium levels in different prenatal stages and infant neurodevelopmental trajectories. Whole blood manganese and selenium in early pregnancy and around birth were measured by inductively-coupled-plasma-mass-spectrometry (ICP-MS), children's cognitive development was evaluated at 6, 12, and 24 months of age using Age & Stage-Questionnaire (ASQ)-3 and Bayley-III. Multiple linear regression was used to investigate the interaction of prenatal selenium and manganese on neurodevelopmental trajectories. RESULTS: The prenatal manganese and selenium levels were 1.82 ± 0.98 µg/dL and 13.53 ± 2.70 µg/dL for maternal blood in early pregnancy, and 5.06 ± 1.67 µg/dL and 11.81 ± 3.35 µg/dL for umbilical cord blood, respectively. Higher prenatal Se levels were associated with better neurocognitive performances or the consistently-high-level trajectory (P < 0.05), with more significant associations observed in early pregnancy than around birth. However, such positive relationships became non-significant or even adverse in high (vs. low) manganese status, and the effect differences between low and high manganese were more significant in early pregnancy. CONCLUSIONS: Prenatal Selenium was positively associated with child neurodevelopment, but prenatal high manganese may mitigate such favorable effects. The effects were mainly observed in earlier prenatal stage.


Subject(s)
Prenatal Exposure Delayed Effects , Selenium , Infant , Pregnancy , Female , Humans , Manganese/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Cohort Studies , China , Child Development , Maternal Exposure
10.
Elife ; 132024 Jan 29.
Article in English | MEDLINE | ID: mdl-38284752

ABSTRACT

Plants have evolved sophisticated mechanisms to regulate gene expression to activate immune responses against pathogen infections. However, how the translation system contributes to plant immunity is largely unknown. The evolutionarily conserved thiolation modification of transfer RNA (tRNA) ensures efficient decoding during translation. Here, we show that tRNA thiolation is required for plant immunity in Arabidopsis. We identify a cgb mutant that is hyper-susceptible to the pathogen Pseudomonas syringae. CGB encodes ROL5, a homolog of yeast NCS6 required for tRNA thiolation. ROL5 physically interacts with CTU2, a homolog of yeast NCS2. Mutations in either ROL5 or CTU2 result in loss of tRNA thiolation. Further analyses reveal that both transcriptome and proteome reprogramming during immune responses are compromised in cgb. Notably, the translation of salicylic acid receptor NPR1 is reduced in cgb, resulting in compromised salicylic acid signaling. Our study not only reveals a regulatory mechanism for plant immunity but also uncovers an additional biological function of tRNA thiolation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Saccharomyces cerevisiae/genetics , Arabidopsis/metabolism , Mutation , RNA, Transfer/genetics , RNA, Transfer/metabolism , Plant Immunity/genetics , Salicylic Acid/metabolism , Gene Expression Regulation, Plant , Plant Diseases/genetics
11.
Pediatr Res ; 95(5): 1372-1378, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38200323

ABSTRACT

BACKGROUND: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood. Little is known about how infancy growth trajectories affect adiposity in early childhood in LGA. METHODS: In the Shanghai Birth Cohort, we followed up 259 LGA (birth weight >90th percentile) and 1673 appropriate-for-gestational age (AGA, 10th-90th percentiles) children on body composition (by InBody 770) at age 4 years. Adiposity outcomes include body fat mass (BFM), percent body fat (PBF), body mass index (BMI), overweight/obesity, and high adiposity (PBF >85th percentile). RESULTS: Three weight growth trajectories (low, mid, and high) during infancy (0-2 years) were identified in AGA and LGA subjects separately. BFM, PBF and BMI were progressively higher from low- to mid-to high-growth trajectories in both AGA and LGA children. Compared to the mid-growth trajectory, the high-growth trajectory was associated with greater increases in BFM and the odds of overweight/obesity or high adiposity in LGA than in AGA children (tests for interactions, all P < 0.05). CONCLUSIONS: Weight trajectories during infancy affect adiposity in early childhood regardless of LGA or not. The study is the first to demonstrate that high-growth weight trajectory during infancy has a greater impact on adiposity in early childhood in LGA than in AGA subjects. IMPACT: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood, but little is known about how weight trajectories during infancy affect adiposity during early childhood in LGA subjects. The study is the first to demonstrate a greater impact of high-growth weight trajectory during infancy (0-2 years) on adiposity in early childhood (at age 4 years) in subjects with fetal overgrowth (LGA) than in those with normal birth size (appropriate-for-gestational age). Weight trajectory monitoring may be a valuable tool in identifying high-risk LGA children for close follow-ups and interventions to decrease the risk of obesity.

12.
Biol Psychiatry ; 95(8): 732-744, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-37678543

ABSTRACT

BACKGROUND: The ability to differentiate stimuli that predict fear is critical for survival; however, the underlying molecular and circuit mechanisms remain poorly understood. METHODS: We combined transgenic mice, in vivo transsynaptic circuit-dissecting anatomical approaches, optogenetics, pharmacological methods, and electrophysiological recording to investigate the involvement of specific extended amygdala circuits in different fear memory. RESULTS: We identified the projections from central lateral amygdala (CeL) protein kinase C δ (PKCδ)-positive neurons and somatostatin (SST)-positive neurons to GABAergic (gamma-aminobutyric acidergic) and glutamatergic neurons in the ventral part of the bed nucleus of stria terminalis (vBNST). Prolonged optogenetic activation or inhibition of the PKCδCeL-vBNST pathway specifically reduced context fear memory, whereas the SSTCeL-vBNST pathway mainly reduced tone fear memory. Intriguingly, optogenetic manipulation of vBNST neurons that received the projection from PKCδCeL neurons exerted bidirectional regulation of context fear, whereas manipulation of vBNST neurons that received the projection from SSTCeL neurons could bidirectionally regulate both context and tone fear memory. We subsequently demonstrated the presence of δ and κ opioid receptor protein expression within the CeL-vBNST circuits, potentially accounting for the discrepancy between prolonged activation of GABAergic circuits and inhibition of downstream vBNST neurons. Finally, administration of an opioid receptor antagonist cocktail on the PKCδCeL-vBNST or SSTCeL-vBNST pathway successfully restored context or tone fear memory reduction induced by prolonged activation of the circuits. CONCLUSIONS: Together, these findings establish a functional role for distinct CeL-vBNST circuits in the differential regulation and appropriate maintenance of fear.


Subject(s)
Basolateral Nuclear Complex , Central Amygdaloid Nucleus , Septal Nuclei , Mice , Animals , Neurons/physiology , Fear/physiology
14.
Bioorg Chem ; 141: 106922, 2023 12.
Article in English | MEDLINE | ID: mdl-37865056

ABSTRACT

The broad-spectrum antimicrobial ability of de novo designed amphiphilic antimicrobial peptides (AMPs) G(IIKK)3I-NH2 (G3) and C8-G(IIKK)2I-NH2 (C8G2) have been demonstrated. Nonetheless, their potential as anti-quorum-sensing (anti-QS) agents, particularly against the opportunistic pathogen Pseudomonas aeruginosa at subinhibitory concentrations, has received limited attention. In this study, we proved that treating P. aeruginosa PAO1 with both AMPs at subinhibitory concentrations led to significant inhibition of QS-regulated virulence factors, including pyocyanin, elastase, proteases, and bacterial motility. Additionally, the AMPs exhibited remarkable capabilities in suppressing biofilm formation and their elimination rate of mature biofilm exceeded 95%. Moreover, both AMPs substantially downregulated the expression of QS-related genes. CD analysis revealed that both AMPs induced structural alterations in the important QS-related protein LasR in vitro. Molecular docking results indicated that both peptides bind to the hydrophobic groove of the LasR dimer. Notably, upon mutating key binding sites (D5, E11, and F87) to Ala, the binding efficiency of LasR to both peptides significantly decreased. We revealed the potential of antibacterial peptides G3 and C8G2 at their sub-MIC concentrations as QS inhibitors against P. aeruginosa and elucidated their action mechanism. These findings contribute to our understanding of the therapeutic potential of these peptides in combating P. aeruginosa infections by targeting the QS system.


Subject(s)
Antimicrobial Peptides , Pseudomonas aeruginosa , Pseudomonas aeruginosa/physiology , Molecular Docking Simulation , Quorum Sensing , Biofilms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism
15.
Front Genet ; 14: 1234757, 2023.
Article in English | MEDLINE | ID: mdl-37662841

ABSTRACT

Fat deposition is an economically important trait in pigs. Ningxiang pig, one of the four famous indigenous breeds in China, is characterized by high fat content. The underlying gene expression pattern in different developmental periods of backfat tissue remains unclear, and the purpose of this investigation is to explore the potential molecular regulators of backfat tissue development in Ningxiang pigs. Backfat tissue (three samples for each stage) was initially collected from different developmental stages (60, 120, 180, 240, 300, and 360 days after birth), and histological analysis and RNA sequencing (RNA-seq) were then conducted. Fragments per kilobase of transcript per million (FPKM) method was used to qualify gene expressions, and differentially expressed genes (DEGs) were identified. Furthermore, strongly co-expressed genes in modules, which were named by color, were clustered by Weighted gene co-expression network analysis (WGCNA) based on dynamic tree cutting algorithm. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment were subsequently implemented, and hub genes were described in each module. Finally, QPCR analysis was employed to validate RNA-seq data. The results showed that adipocyte area increased and adipocyte number decreased with development of backfat tissue. A total of 1,024 DEGs were identified in five comparison groups (120 days vs. 60 days, 180 days vs. 120 days, 240 days vs. 180 days, 300 days vs. 240 days, and 360 days vs. 300 days). The turquoise, red, pink, paleturquoise, darkorange, and darkgreen module had the highest correlation coefficient with 60, 120, 180, 240, 300, and 360 days developmental stage, while the tan, black and turquoise module had strong relationship with backfat thickness, adipocyte area, and adipocyte number, respectively. Thirteen hub genes (ACSL1, ACOX1, FN1, DCN, CHST13, COL1A1, COL1A2, COL6A3, COL5A1, COL14A1, OAZ3, DNM1, and SELP) were recognized. ACSL1 and ACOX1 might perform function in the early developmental stage of backfat tissue (60 days), and FN1, DCN, COL1A1, COL1A2, COL5A1, COL6A3, and COL14A1 have unignorable position in backfat tissue around 120 days developmental stage. Besides, hub genes SELP and DNM1 in modules significantly associated with backfat thickness and adipocyte area might be involved in the process of backfat tissue development. These findings contribute to understand the integrated mechanism underlying backfat tissue development and promote the progress of genetic improvement in Ningxiang pigs.

16.
Trends Endocrinol Metab ; 34(12): 849-861, 2023 12.
Article in English | MEDLINE | ID: mdl-37739878

ABSTRACT

Metabolic abnormalities are a hallmark of cancer cells and are essential to tumor progression. Oncometabolites have pleiotropic effects on cancer biology and affect a plethora of processes, from oncogenesis and metabolism to therapeutic resistance. Targeting oncometabolites, therefore, could offer promising therapeutic avenues against tumor growth and resistance to treatments. Recent advances in characterizing the metabolic profiles of cancer cells are shedding light on the underlying mechanisms and associated metabolic networks. This review summarizes the diverse detection methods, molecular mechanisms, and therapeutic targets of oncometabolites, which may lead to targeting oncometabolism for cancer therapy.


Subject(s)
Neoplasms , Humans , Neoplasms/metabolism , Carcinogenesis , Cell Transformation, Neoplastic/metabolism , Metabolic Networks and Pathways , Metabolome
17.
Chemosphere ; 341: 139883, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37672813

ABSTRACT

It has been globally recognized that obesity has become a major public health concern, especially childhood obesity. There is limited information, however, regarding the exposure risk of organic ultraviolet (UV) filters, a kind of emerging contaminant, on childhood obesity. This study would be made on 284 obese and 220 non-obese Chinese children with eight organic UV filters at urinary levels. The eight organic UV filters, including 2-Ethylhexyl 4-aminobenzoate (PABA-E), octisalate (EHS), homosalate (HMS), 2-Ethylhexyl-p-methoxycinnamate (EHMC), benzophenone-3 (BP-3), amiloxate (IAMC), octocrylene (OC) and 4-Methylbenzylidene camphor (4-MBC) were identified in urine samples with detection rates ranged from 35.32% to 100%, among which PABA-E, HMS, IAMC and OC were firstly detected in children' s urine. And the urinary UV filters concentration was associated with genders, living sites, guardian education levels, household income, and dietary factors. Urinary EHMC concentrations and childhood obesity were positively associated for girls [Adjusted OR = 2.642 (95% CI: 1.019, 6.853)], while OC concentrations and childhood obesity were negatively associated for girls [Adjusted OR = 0.022 (95% CI: 0.001, 0.817)]. The results suggest that EHMC exposure may be an environmental obesogen for girls. Moreover, two statistical models were used separately to evaluate the impact of UV filter mixtures on childhood obesity, including the Bayesian kernel machine regression (BKMR) model and the quantile g-computation (qgcomp) model. The negative association between UV filter mixtures and childhood obesity was proposed from both BKMR and qgcomp models. Further experimental and epidemiological studies are called upon to discern the individual and mixture impacts of organic UV filters on childhood obesity.


Subject(s)
Pediatric Obesity , Child , Male , Humans , Female , Case-Control Studies , 4-Aminobenzoic Acid , Bayes Theorem
18.
Biomed Pharmacother ; 164: 114909, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37210898

ABSTRACT

Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/ß-catenin, Rho/ROCK, TGF-ß, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.


Subject(s)
Endometriosis , Female , Humans , Endometriosis/pathology , Phosphatidylinositol 3-Kinases/metabolism , Quality of Life , Signal Transduction , NF-kappa B/metabolism , Endometrium/metabolism
19.
Front Microbiol ; 14: 1118853, 2023.
Article in English | MEDLINE | ID: mdl-37089555

ABSTRACT

Background: Gerhardtia and Ossicaulis are two genera within the family Lyophyllaceae, which show an apparently poor species diversity worldwide. During the field investigation on wild macrofungi, six interesting collections within Gerhardtia and Ossicaulis genera are discovered in the northeastern China. Methods: To identify whether these collections of Gerhardtia and Ossicaulis are novel species, we performed phylogenetic analyzes using the following DNA regions: the internal transcribed spacer (ITS) region and the large subunit nuclear ribosomal RNA (nrLSU) region. Moreover, a traditional morphological method also be conducted based on both the macro-morphological and micro-morphological features. Results: The results indicated that these collections tested formed two independent lineages in each genus with a high support. In addition, they can easily be separated from all other taxa of the two genera in morphology. Based on the combination of morphological and molecular data, Gerhardtia tomentosa and Ossicaulis borealis, are confirmed as two new species to science. Discussions: This study provided a theoretical basis is for the two lyophylloid genera and indicated that the biodiversity resources of northeastern China might be underestimated.

20.
Front Psychol ; 14: 1012701, 2023.
Article in English | MEDLINE | ID: mdl-36874841

ABSTRACT

Introduction: Personal relationships have long been a concern in education. Most studies indicate that good personal relationships are generally positively correlated with academic performance. However, few studies have compared how different types of personal relationships correlate with academic performance, and the conclusions of existing studies are inconsistent. Based on a large sample, the current study compared how the three closest types of personal relationships among students (with parents, teachers, and their peers) compared with their academic performance. Methods: Cluster sampling was used to issue questionnaires to students in Qingdao City, Shandong Province, China in 2018 (Study 1) and in 2019 (Study 2). The actual sample size included 28168 students in Study 1 and 29869 students in Study 2 (both studies, Grades 4 and 8), thus totaling 58037 students. All students completed a personal relationship questionnaire and several academic tests. Results: The results showed that: (1) the quality of personal relationships significantly and positively correlated with academic performance; (2) Among the three types of relationships tested, the quality of student-peer relationships was the most closely associated with academic achievement. Discussion: This study gives insights into future research directions in this field and also reminds educators to pay attention to the personal relationships among their students, especially peer relationships.

SELECTION OF CITATIONS
SEARCH DETAIL
...