Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Am J Hypertens ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38782571

ABSTRACT

BACKGROUND: In the hypothalamic paraventricular nucleus (PVN) of spontaneously hypertensive rats (SHRs), the expression of Testis specific protein, Y-encoded-like 2 (TSPYL2) and the phosphorylation level of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) are higher comparing with the normotensive Wistar-Kyoto rats (WKY). But how they are involved in hypertension remains unclear. TSPYL2 may interact with JAK2/STAT3 in PVN to sustain the high blood pressure during hypertension. METHODS: Knockdown of TSPYL2 via adeno-associated virus (AAV) carrying shRNA was conducted through bilateral micro-injection into the PVN of SHR and WKY rats. JAK2/STAT3 inhibition was achieved by intraperitoneally or PVN injection of AG490 into the SHRs. Blood pressure (BP), plasma norepinephrine (NE), PVN inflammatory response, and PVN oxidative stress were measured. RESULTS: TSPYL2 knock-down in the PVN of SHRs but not WKYs led to reduced BP and plasma NE, and deactivation of JAK2/STAT3, decreased expression of pro-inflammatory cytokine IL-1ß, and increased expression of anti-inflammatory cytokine IL-10 in the PVN. Meanwhile, AG490 administrated in both ways reduced the blood pressure in the SHRs and deactivated JAK2/STAT3 but failed to change the expression of TSPYL2 in PVN. AG490 also downregulated expression of IL-1ß and upregulated expression of IL-10. Both knockdown of TSPYL2 and inhibition of JAK2/STAT3 can reduce the oxidative stress in the PVN of SHRs. CONCLUSION: JAK2/STAT3 is regulated by TSPYL2 in the PVN of SHRs, and PVN TSPYL2/JAK2/STAT3 is essential for maintaining high blood pressure in the hypertensive rats, making it a potential therapeutic target for hypertension.

2.
Eur J Immunol ; : e2451046, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778501

ABSTRACT

Chronic hepatitis B (CHB) virus infection, which can be divided into immune-tolerant (IT), immune-active (IA), inactive carrier (IC) phases, and HBeAg-negative hepatitis (ENEG), can induce liver cirrhosis and eventually hepatocellular carcinoma (HCC). CD3+CD56+ NKT-like cells play an important role in antiviral immune response. However, the mechanism of NKT-like cells to mediate immune tolerance remains largely elusive. In this study, we observed circulating NKT-like cells from IC and IT CHB patients were phenotypically and functionally impaired, manifested by increased expression of inhibitory receptor TIGIT and decreased capacity of secreting antiviral cytokines. Besides, TIGIT+ NKT-like cells of IC and IT CHB patients expressed lower levels of cytotoxic cytokines than the TIGIT- subset. Furthermore, increased expression of CD155, the ligand of TIGIT, on plasmacytoid dendritic cells (pDCs) was detected in IC and IT CHB patients. Importantly, the co-culture of NKT-like cells and pDCs showed that NKT-like cells restored their antiviral ability after TIGIT blockade upon HBV peptide stimulation in IC and IT CHB patients. In conclusion, our findings suggest that the TIGIT pathway may mediate immune tolerance in IT CHB patients and lead to functional impairment in IC patients, indicating that TIGIT may be a potential therapeutic checkpoint for immunotherapy of CHB patients.

3.
Sci Total Environ ; 933: 173155, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735323

ABSTRACT

Climate change has induced substantial impact on the gross primary productivity (GPP) of terrestrial ecosystems by affecting vegetation phenology. Nevertheless, it remains unclear which among the mean rates of grass greening (RG), yellowing (RY), and the length of growing season (LOS) exhibit stronger explanatory power for GPP variations, and how RG and RY affect GPP variations under warming scenarios. Here, we explored the relationship between RG, RY, LOS, and GPP in arid Central Asia (ACA) from 1982 to 2019, elucidating the response mechanisms of RG, RY, and GPP to the mean temperature (TMP), vapor pressure deficit (VPD), precipitation (PRE), and soil moisture (SM). The results showed that the multi-year average length of greening (LG) in ACA was 22.7 days shorter than that of yellowing (LY) and the multi-year average GPP during LG (GPPlg) was 38.28 g C m-2 d -1 more than that of during LY (GPPly). RG and RY were positively correlated with GPPlg and GPPly, although the degree of correlation between RG and GPPlg was higher than that between RY and GPPly. Increases in RG and RY contributed to an increase in GPPlg (55.44 % of annual GPP) and GPPly (35.44 % of annual GPP). The correlation between RG and GPPlg was the strongest (0.49), followed by RY and GPPly (0.33), and LOS and GPP was the weakest (0.21). TMP, VPD, PRE, and SM primarily affected GPP by influencing RG and RY, rather than direct effects. The positive effects of TMP during LG (TMPlg), PRE during LG (PRElg), and SM during LG (SMlg) facilitated increases in RG and GPPlg, and higher VPD during LY (VPDly) and lower PRE during LY (PREly) accelerated increases in RY. Our study elucidated the impact of vegetation growth rate on GPP, thus providing an alternate method of quantifying the relationship between vegetation phenology and GPP.


Subject(s)
Climate Change , Grassland , Seasons , Poaceae/growth & development , Asia, Central , Environmental Monitoring
4.
Sci Total Environ ; 926: 171614, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38508276

ABSTRACT

The phosphate-modified biochar (BC) immobilizes cadmium (Cd), yet little is known about how phosphate species affect Cd detoxification in contaminated soils. We developed phosphate-modified biochar through the pyrolysis of wheat straw impregnated with three types of phosphate: mono­potassium phosphate (MKP), dipotassium hydrogen phosphate (DKP), and tripotassium phosphate (TKP). The Cd adsorption mechanism of modified biochar was investigated by biochar characterization, adsorption performance evaluation, and soil incubation tests. The results demonstrated that the efficiency of biochar in immobilizing Cd2+ followed the order: TKP-BC > DKP-BC > MKP-BC. The TKP-BC had the highest orthophosphate content, the fastest adsorption rate, and the largest adsorption capacity (Langmuir) of 257.28 mg/g, which is 6.31 times higher than that of the unmodified BC (CK). In contrast, pyrophosphate was predominant in MKP-BC and DKP-BC. The primary adsorption mechanism for Cd2+ was precipitation, followed by cation exchange, as evidenced by the formation of CdP minerals on the BC surface, and an increase of K+ in solution (compared to water-soluble K+) and a decrease of K+ in the biochar during adsorption. Desorption of Cd from the TKP-BC after adsorption was 9.77 %-12.39 % at a pH of 5-9, much lower than that of CK. The soil incubation test showed the diethylenetriaminepentaacetic acid extracted Cd of TKP-BC, MKP-BC, and DKP-BC was reduced by 67.93 %, 18.41 % and 31.30 % over CK, respectively. Using the planar optodes technique, we also found that TKP-BC had the longest effect enhancing in situ soil pH. This study provides a theoretical basis for developing heavy metal pollution control technology using green remediation materials and offers insights into the remediation mechanisms.


Subject(s)
Cadmium , Potassium Compounds , Soil Pollutants , Cadmium/analysis , Soil/chemistry , Triticum/chemistry , Charcoal/chemistry , Phosphates , Soil Pollutants/analysis , Adsorption
5.
Viruses ; 16(2)2024 02 18.
Article in English | MEDLINE | ID: mdl-38400087

ABSTRACT

African swine fever (ASF) is a lethal contagious viral disease of domestic pigs and wild boars caused by the African swine fever virus (ASFV). The pandemic spread of ASF has caused severe effects on the global pig industry. Whole-genome sequencing provides crucial information for virus strain characterization, epidemiology analysis and vaccine development. Here, we evaluated the performance of next-generation sequencing (NGS) in generating ASFV genome sequences from clinical samples. Thirty-four ASFV-positive field samples including spleen, lymph node, lung, liver and blood with a range of Ct values from 14.73 to 25.95 were sequenced. For different tissue samples collected from the same sick pigs, the proportion of ASFV reads obtained from the spleen samples was 3.69-9.86 times higher than other tissues. For the high-viral-load spleen samples (Ct < 20), a minimum of a 99.8% breadth of ≥10× coverage was revealed for all the samples. For the spleen samples with Ct ≥ 20, 6/12 samples had a minimum of a 99.8% breadth of ≥10× coverage. A high average depth of sequencing coverage was also achieved from the blood samples. According to our results, high-quality ASFV whole-genome sequences could be obtained from the spleen or blood samples with Ct < 20. The high-quality ASFV genome sequence generated in this study was further used for the high-resolution phylogenetic analysis of the ASFV genomes in the early stage of the ASF epidemic in China. Our study demonstrates that NGS may act as a useful tool for efficient ASFV genome characterization, providing valuable information for disease control.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/genetics , Phylogeny , Sus scrofa , High-Throughput Nucleotide Sequencing
6.
Eur J Pharmacol ; 974: 176373, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38341079

ABSTRACT

BACKGROUND: Oxidative stress and inflammatory cytokines in the hypothalamus paraventricular nucleus (PVN) have been implicated in sympathetic nerve activity and the development of hypertension, but the specific mechanisms underlying their production in the PVN remains to be elucidated. Previous studies have demonstrated that activation of nuclear transcription related factor-2 (Nrf2) in the PVN reduced the production of reactive oxygen species (ROS) and inflammatory mediators. Moreover, AMP-activated protein kinase (AMPK), has been observed to decrease ROS and inflammatory cytokine production when activated in the periphery. 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an AMPK agonist. However, little research has been conducted on the role of AMPK in the PVN during hypertension. Therefore, we hypothesized that AICAR in the PVN is involved in regulating AMPK/Nrf2 pathway, affecting ROS and inflammatory cytokine expression, influencing sympathetic nerve activity. METHODS: Adult male Sprague-Dawley rats were utilized to induce two-kidney, one-clip (2K1C) hypertension via constriction of the right renal artery. Bilateral PVN was microinjected with either artificial cerebrospinal fluid or AICAR once a day for 4 weeks. RESULTS: Compared to the SHAM group, the PVN of 2K1C hypertensive rats decreased p-AMPK and p-Nrf2 expression, increased Fra-Like, NAD(P)H oxidase (NOX)2, NOX4, tumor necrosis factor-α and interleukin (IL)-1ß expression, elevated ROS levels, decreased superoxide dismutase 1 and IL-10 expression, and elevated plasma norepinephrine levels. Bilateral PVN microinjection of AICAR significantly ameliorated these changes. CONCLUSION: These findings suggest that repeated injection of AICAR in the PVN suppresses ROS and inflammatory cytokine production through the AMPK/Nrf2 pathway, reducing sympathetic nerve activity and improving hypertension.


Subject(s)
AMP-Activated Protein Kinases , Aminoimidazole Carboxamide , Hypertension , NF-E2-Related Factor 2 , Paraventricular Hypothalamic Nucleus , Rats, Sprague-Dawley , Reactive Oxygen Species , Ribonucleotides , Signal Transduction , Animals , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Male , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Aminoimidazole Carboxamide/administration & dosage , Ribonucleotides/pharmacology , Ribonucleotides/administration & dosage , AMP-Activated Protein Kinases/metabolism , Hypertension/drug therapy , Hypertension/metabolism , NF-E2-Related Factor 2/metabolism , Rats , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Blood Pressure/drug effects , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism , Oxidative Stress/drug effects , Cytokines/metabolism
7.
J Biophotonics ; 17(1): e202300276, 2024 01.
Article in English | MEDLINE | ID: mdl-37669431

ABSTRACT

Gastric cancer is becoming the second biggest cause of death from cancer. Treatment and prognosis of different types of gastric cancer vary greatly. However, the routine pathological examination is limited to the tissue level and is easily affected by subjective factors. In our study, we examined gastric mucosal samples from 50 normal tissue and 90 cancer tissues. Hyperspectral imaging technology was used to obtain spectral information. A two-classification model for normal tissue and cancer tissue identification and a four-classification model for cancer type identification are constructed based on the improved deep residual network (IDRN). The accuracy of the two-classification model and four-classification model are 0.947 and 0.965. Hyperspectral imaging technology was used to extract molecular information to realize real-time diagnosis and accurate typing. The results show that hyperspectral imaging technique has good effect on diagnosis and type differentiation of gastric cancer, which is expected to be used in auxiliary diagnosis and treatment.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/diagnostic imaging , Hyperspectral Imaging
8.
Biomed Pharmacother ; 169: 115908, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37988849

ABSTRACT

The high expression of BLM (Bloom syndrome) DNA helicase in tumors involves its strong association with cell expansion. Bisbenzylisoquinoline alkaloids own an antitumor property and have developed as candidates for anticancer drugs. This paper aimed to study the antitumor effect of fangchinoline derivative HY-2 by targeting BLM642-1290 DNA helicase, and then explore its inhibitory mechanism on proliferation of MDA-MB-435 breast cancer cells. We confirmed that the mRNA and protein levels of BLM DNA helicase in breast cancer were higher than those in normal tissues. HY-2 could inhibit the DNA binding, ATPase and DNA unwinding of BLM642-1290 DNA helicase with enzymatic assay. HY-2 could also inhibit the DNA unwinding of DNA helicase in cells. In addition, HY-2 showed an inhibiting the MDA-MB-435, MDA-MB-231, MDA-MB-436 breast cancer cells expansion. The mRNA and protein levels of BLM DNA helicase in MDA-MB-435 cells increased after HY-2 treatment, which might contribute to HY-2 inhibiting the DNA binding, ATPase and DNA unwinding of BLM DNA helicase. The mechanism of HY-2 inhibition on BLM DNA helicase was further confirmed with the effect of HY-2 on the ultraviolet spectrogram of BLM642-1290 DNA helicase and Molecular dynamics simulation of the interacting between HY-2 and BLM640-1291 DNA helicase. Our study provided some valuable clues for the exploration of HY-2 in the living body and developing it as an anticancer drug.


Subject(s)
Antineoplastic Agents , Benzylisoquinolines , Breast Neoplasms , Female , Humans , Benzylisoquinolines/pharmacology , Breast Neoplasms/drug therapy , DNA/metabolism , RecQ Helicases/chemistry , RecQ Helicases/genetics , RecQ Helicases/metabolism , RNA, Messenger , DNA Helicases/antagonists & inhibitors , DNA Helicases/metabolism
9.
BMC Med Educ ; 23(1): 752, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821849

ABSTRACT

OBJECTIVE: This study explored the application effect of smart classrooms combined with virtual simulation training in basic nursing courses for nursing undergraduates. METHODS: In this quasi-experimental study, a total of 135 undergraduate nursing students in the 2021 matriculating cohort were selected as the research subjects. The experimental group of Class 1 had 71 students, and a blended teaching design utilizing a smart classroom and virtual simulation training was adopted. The control group of Class 2 had 64 students, and traditional lecture-based teaching design was adopted. After the course, the independent learning ability scale, test scores and teaching effectiveness questionnaire were used to evaluate the teaching effect. All tests had a maximum score of 100. RESULTS: Nursing undergraduates in the experimental group had scores of 86.32 ± 8.25 for virtual simulation training and 84.82 ± 9.04 for peer-assisted learning. The scores of the theoretical examination, experimental examination, and subjective questions in the experimental group were significantly higher than those in the control group (P < 0.05). The approval rate of nursing undergraduates in the experimental group was significantly higher than that of the control group for four items (Ps < 0.05). Among the 71 students, most students (91.55%) claimed that the use of instructional designs increased the fun of the classroom. In addition to the dimension of information literacy, the total score of independent learning ability and the other three dimensions of the experimental group were significantly higher than those of the control group (P < 0.05). CONCLUSION: The teaching design combining smart classrooms and virtual simulation training can be applied to realize online blended teaching and classroom informatization, improving the academic performance and independent learning ability of nursing undergraduates, and thus achieving good teaching effects.


Subject(s)
Education, Nursing, Baccalaureate , Simulation Training , Students, Nursing , Humans , Problem-Based Learning/methods , Curriculum , Education, Nursing, Baccalaureate/methods , Teaching
10.
Int J Med Inform ; 178: 105191, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37657203

ABSTRACT

BACKGROUND: Mortality risk prediction is to predict whether a patient has the risk of death based on relevant diagnosis and treatment data. How to accurately predict patient mortality risk based on electronic health records (EHR) is currently a hot research topic in the healthcare field. In actual medical datasets, there are often many missing values, which can seriously interfere with the effect of model prediction. However, when missing values are interpolated, most existing methods do not take into account the fidelity or confidence of the interpolated values. Misestimation of missing variables can lead to modeling difficulties and performance degradation, while the reliability of the model may be compromised in clinical environments. MATERIALS AND METHODS: We propose a model based on Missing Value Imputation and Reliability Assessment for mortality risk prediction (MVIRA). The model uses a combination of variational autoencoder and recurrent neural networks to complete the interpolation of missing values and enhance the characterization ability of EHR data, thus improving the performance of mortality risk prediction. In addition, we also introduce the Monte Carlo Dropout method to calculate the uncertainty of the model prediction results and thus achieve the reliability assessment of the model. RESULTS: We perform performance validation of the model on the public datasets MIMIC-III and MIMIC-IV. The proposed model showed improved performance compared with competitive models in terms of overall specialties. CONCLUSION: The proposed model can effectively improve the accuracy of mortality risk prediction, and can help medical institutions assess the condition of patients.

11.
J Pathol ; 261(1): 105-119, 2023 09.
Article in English | MEDLINE | ID: mdl-37550813

ABSTRACT

Granulomatous slack skin (GSS) is an extremely rare subtype of cutaneous T-cell lymphoma accompanied by an abundant number of macrophages and is clinically characterized by the development of pendulous skin folds. However, the characteristics of these macrophages in GSS remain unclear. Here, we conducted a spatial transcriptomic study on one frozen GSS sample and drew transcriptomic maps of GSS for the first time. Gene expression analysis revealed the enrichment of three clusters with macrophage transcripts, each exhibiting distinct characteristics suggesting that their primary composition consists of different subpopulations of macrophages. The CD163+ /CD206+ cluster showed a tumor-associated macrophage (TAM) M2-like phenotype and highly expressed ZFP36, CCL2, TNFAIP6, and KLF2, which are known to be involved in T-cell interaction and tumor progression. The APOC1+ /APOE+ cluster presented a non-M1 or -M2 phenotype and may be related to lipid metabolism. The CD11c+ /LYZ+ cluster exhibited an M1-like phenotype. Notably, these cells strongly expressed MMP9, MMP12, CHI3L1, CHIT1, COL1A1, TIMP1, and SPP1, which are responsible for extracellular matrix (ECM) degradation and tissue remodeling. This may partially explain the symptoms of cutaneous relaxation in GSS. Further immunohistochemistry on four GSS cases demonstrated that CD11c predominantly marked granulomas and multinucleated giant cells, whereas CD163 was mainly expressed on scattered macrophages, appearing as a mutually exclusive pattern. The expression pattern of MMP9 overlapped with that of CD11c, implying that CD11c+ macrophages may be a source of MMP9. Our data shed light on the characteristics of macrophages in the GSS microenvironment and provide a theoretical basis for the application of MMP9 inhibitors to prevent cutaneous relaxation of GSS. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Humans , Matrix Metalloproteinase 9 , Skin Neoplasms/genetics , Tumor Microenvironment , Transcriptome , Lymphoma, T-Cell, Cutaneous/complications , Lymphoma, T-Cell, Cutaneous/diagnosis , Lymphoma, T-Cell, Cutaneous/pathology , Macrophages/pathology , Gene Expression Profiling
12.
J Biomed Inform ; 145: 104447, 2023 09.
Article in English | MEDLINE | ID: mdl-37481052

ABSTRACT

Molecular property prediction based on artificial intelligence technology has significant prospects in speeding up drug discovery and reducing drug discovery costs. Among them, molecular property prediction based on graph neural networks (GNNs) has received extensive attention in recent years. However, the existing graph neural networks still face the following challenges in node representation learning. First, the number of nodes increases exponentially with the expansion of the perception field, which limits the exploration ability of the model in the depth direction. Secondly, the large number of nodes in the perception field brings noise, which is not conducive to the model's representation learning of the key structures. Therefore, a graph neural network model based on structure generation is proposed in this paper. The model adopts the depth-first strategy to generate the key structures of the graph, to solve the problem of insufficient exploration ability of the graph neural network in the depth direction. A tendentious node selection method is designed to gradually select nodes and edges to generate the key structures of the graph, to solve the noise problem caused by the excessive number of nodes. In addition, the model skillfully realizes forward propagation and iterative optimization of structure generation by using an attention mechanism and random bias. Experimental results on public data sets show that the proposed model achieves better classification results than the existing best models.


Subject(s)
Artificial Intelligence , Drug Discovery , Learning , Neural Networks, Computer , Technology
13.
Phytomedicine ; 118: 154951, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453193

ABSTRACT

BACKGROUND: Hypertension has seriously affected a large part of the adult and elderly population. The complications caused by hypertension are important risk factors for cardiovascular disease accidents. Capsaicin, a pungent component of chili pepper has been revealed to improve hypertension. However, its potential mechanism in improving hypertension remains to be explored. PURPOSE: In the present study, we aimed to investigate whether capsaicin could attenuate the SIRT1/NF-κB/MAPKs pathway in the paraventricular nucleus of hypothalamus (PVN). METHODS: We used spontaneous hypertensive rats (SHRs) as animal model rats. Micro osmotic pump was used to give capsaicin through PVN for 28 days, starting from age12-week-old. RESULTS: The results showed that capsaicin significantly reduced blood pressure from the 16th day of infusion onward. At the end of the experimental period, we measured cardiac hypertrophy index and the heart rate (HR), and the results showed that the cardiac hypertrophy and heart rate of rats was significantly improved upon capsaicin chronic infusion. Norepinephrine (NE) and epinephrine (EPI) in plasma of SHRs treated with capsaicin were also decreased. Additionally, capsaicin increased the protein expression and number of positive cells of SIRT1 and the 67-kDa isoform of glutamate decarboxylase (GAD67), decreased the production of reactive oxygen species (ROS), number of positive cells of NOX2, those of Angiotensin Converting Enzyme (ACE) and p-IKKß, tyrosine hydroxylase (TH), the gene expression levels of NOX4 and pro-inflammatory cytokines. Capsaicin also decreased the relative protein expressions of protein in MAPKs pathway. CONCLUSION: Current data indicated that capsaicin within the PVN improves hypertension and cardiac hypertrophy via SIRT1/NF-κB/MAPKs pathway in the PVN of SHRs, supporting its potential as candidate drug for preventing and improving hypertension.


Subject(s)
Hypertension , NF-kappa B , Aged , Humans , Rats , Animals , NF-kappa B/metabolism , Paraventricular Hypothalamic Nucleus , Capsaicin/pharmacology , Sirtuin 1/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Rats, Inbred SHR
14.
Cancer Cell Int ; 23(1): 144, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37480012

ABSTRACT

PURPOSE: Myelin and lymphocyte protein 2 (MAL2) is mainly involved in endocytosis under physiological conditions and mediates the transport of materials across the membranes of cell and organelle. It has been reported that MAL2 is significantly upregulated in diverse cancers. This study aimed to investigate the role of MAL2 in breast cancer (BC). METHODS: Bioinformatics analysis and Immunohistochemical assay were applied to detect the correlation between MAL2 expression in breast cancer tissues and the prognosis of breast cancer patients. Functional experiments were carried out to investigate the role of MAL2 in vitro and in vivo. The molecular mechanisms involved in MAL2-induced ß-catenin and c-Myc expression and ß-catenin/c-Myc-mediated enhancement of BC progression were confirmed by western blot, ß-catenin inhibitor and agonist, Co-IP and immunofluorescence colocalization assays. RESULTS: Results from the cancer genome atlas (TCGA) and clinical samples confirmed a significant upregulation of MAL2 in BC tissues than in adjacent non-tumor tissues. High expression of MAL2 was associated with worse prognosis. Functional experiments demonstrated that MAL2 knockdown reduced the migration and invasion associating with EMT, increased the apoptosis of BC cells in vitro and reduced the metastatic capacity in vivo. Mechanistically, MAL2 interacts with ß-catenin in BC cells. MAL2 silencing reduced the expression of ß-catenin and c-Myc, while the ß-catenin agonist SKL2001 partially rescued the downregulation of c-Myc and inhibition of migration and invasion caused by MAL2 knockdown in BC cells. CONCLUSION: These observations provided evidence that MAL2 acted as a potential tumor promoter by regulating EMT and ß-catenin/c-Myc axis, suggesting potential implications for anti-metastatic therapy for BC.

15.
PeerJ ; 11: e15165, 2023.
Article in English | MEDLINE | ID: mdl-37033724

ABSTRACT

Background: Drought is one of the crucial constraints limiting horticultural plant's production and development around the world. Pugionium cornutum is an annual or biennial xerophyte with strong environmental adaptability and drought resistance; however, the mechanisms with respect to response to drought stress remain largely unclear. Methods: After seedling emergence, the gravimetric method was used to control soil relative water content (SRWC). Drought stress was applied to the six-leaf stage P. cornutum seedlings. The soil water content of different drought stress levels (L) was controlled by gravimetric method as follows: control (L1): 70-75% SRWC; moderate drought level (L2): 40-45% SRWC; severe drought level (L3): 30-35% SRWC, and the water was added to different drought stress levels at about 18:00 p.m. every day. The experiment ended when the leaves of P. cornutum showed severe wilting (10-leaf stage). Samples were harvested and stored at -80 °C for physiological determination, and transcriptomic and proteomic sequencing. Results: Compared with L1, the leaves of P. cornutum seedlings were increasingly wilted after drought treatment; the SRWC of the drought-stress leaves decreased notably while the leaf water potential was rose; the proline, malondialdehyde (MDA) content increased with the continuous drought treatment but peroxidase (POD) activity decreased. Besides, 3,027 differential genes (DGs) and 196 differential proteins (DPs), along with 1,943 DGs and 489 DPs were identified in L2-L1 and L3-L1, respectively. The transcriptome and proteome integrated analysis manifested that only 30 and 70 were commonly regulated both in L2-L1 and L3-L1, respectively. Of which, 24 and 61 DGs or DPs showed the same trend including sHSPs, APX2, GSTU4, CML42, and POD, etc. However, most of DGs or DPs were regulated only at the transcriptome or proteome level mainly including genes encoding signal pathway (PYR1, PYLs, SnRK2J, PLC2, CDPK9/16/29, CML9, MAPKs), transcription factors (WRKYs, DREB2A, NAC055, NAC072, MYB and, HB7) and ion channel transporters (ALMT4, NHX1, NHX2 and TPK2). These genes or proteins were involved in multiple signaling pathways and some important metabolism processes, which offers valuable information on drought-responsive genes and proteins for further study in P. cornutum.


Subject(s)
Apiaceae , Droughts , Plant Leaves , Seedlings , Antioxidants/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Seedlings/genetics , Seedlings/metabolism , Soil , Transcriptome/genetics , Transcriptome/physiology , Water , Apiaceae/genetics , Apiaceae/metabolism
16.
Am J Hypertens ; 36(6): 306-315, 2023 05 21.
Article in English | MEDLINE | ID: mdl-36738296

ABSTRACT

BACKGROUND: Hydrogen sulfide (H2S) is widely distributed throughout the nervous system with various antioxidant and anti-inflammatory properties. Hypertension involves an increase in reactive oxygen species (ROS) and inflammation in the hypothalamic paraventricular nucleus (PVN). However, it is unclear how H2S in PVN affects hypertension. METHODS: Our study used spontaneously hypertensive rats (SHR) and control Wistar Kyoto (WKY) rats, microinjected with adenovirus-associated virus (AAV)-CBS (cystathionine beta-synthase overexpression) or AAV-ZsGreen in bilateral PVN, or simultaneously injected with virus-carrying nuclear factor erythroid 2-related factor 2 (Nrf2)-shRNA for 4 weeks. Blood pressure (BP) and plasma noradrenaline level were detected, and the PVN was collected. Finally, levels of CBS, H2S, Nrf2, Fra-LI, ROS, gp91phox, p47phox, superoxide dismutase 1, interleukin (IL)-1ß, IL-6, IL-10, tumor necrosis factor-α, tyrosine hydroxylase, and glutamate decarboxylase 67 were measured. RESULTS: We found that AAV-CBS increased H2S in the PVN, and BP, neuronal activation, oxidative stress, and inflammation of PVN were substantially reduced. Furthermore, endogenous H2S in the PVN activated Nrf2 and corrected the PVN's imbalance of excitatory and inhibitory neurotransmitters. However, Nrf2 knockdown in the PVN was similarly observed to abolish the beneficial effect of H2S on hypertension. CONCLUSIONS: The findings imply that endogenous H2S in SHR PVN is reduced, and PVN endogenous H2S can alleviate hypertension via Nrf2-mediated antioxidant and anti-inflammatory effects.


Subject(s)
Hydrogen Sulfide , Hypertension , Rats , Animals , Antihypertensive Agents/therapeutic use , Rats, Inbred SHR , Paraventricular Hypothalamic Nucleus/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Reactive Oxygen Species/metabolism , Rats, Inbred WKY , Anti-Inflammatory Agents/pharmacology , Inflammation/metabolism
17.
Nutrients ; 15(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36771206

ABSTRACT

BACKGROUND: Luteolin is widely distributed among a number of vegetal species worldwide. The pharmacological effects of luteolin are diverse and amongst antioxidant, free radical scavenging, and anti-inflammatory activities. Preliminary study showed that luteolin can ameliorate hypertension. However, the precise mechanism needs further investigation. There is no evidence that luteolin affects the paraventricular nucleus of the hypothalamus (PVN), a brain nucleus associated with a critical neural regulator of blood pressure. Our main aim was to explore the effect of luteolin on the PI3K/Akt/NF-κB signaling pathway within the PVN of hypertensive rats. METHODS: spontaneously hypertensive rats (SHRs) and corresponding normotensive control rats, the Wistar Kyoto (WKY) rats were divided into four groups and subsequently treated for 4 weeks with bilateral PVN injections of either luteolin (20 µg/0.11 µL, volume: 0.11 µL/h) or vehicle (artificial cerebrospinal fluid). RESULTS: luteolin infusion to the PVN significantly decreased some hemodynamic parameters including the mean arterial pressure (MAP), heart rate (HR), circulating plasma norepinephrine (NE) and epinephrine (EPI). Additionally, there was a decrease in the expressions of the phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT), levels of reactive oxygen species (ROS), NAD(P)H oxidase subunit (NOX2, NOX4) in the PVN of SHRs. Meanwhile, the expression of inflammatory cytokines and the activity of nuclear factor κB (NF-κB) p65 in the PVN of SHRs were lowered. Furthermore, immunofluorescence results showed that injection of luteolin in the PVN reduced the expression of tyrosine hydroxylase (TH), and increased that of superoxide dismutase (SOD1) and the 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN of SHRs. CONCLUSION: Our novel findings revealed that luteolin lowered hypertension via inhibiting NF-κB-mediated inflammation and PI3K/Akt signaling pathway in the PVN.


Subject(s)
Hypertension , NF-kappa B , Rats , Animals , NF-kappa B/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Luteolin/pharmacology , Luteolin/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Inbred WKY , Signal Transduction , Rats, Inbred SHR , Inflammation/metabolism , Sympathetic Nervous System
18.
Tohoku J Exp Med ; 259(2): 163-172, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36450479

ABSTRACT

Proinflammatory cytokines, reactive oxygen species and imbalance of neurotransmitters are involved in the pathophysiology of angiotensin II-induced hypertension. The hypothalamic paraventricular nucleus (PVN) plays a vital role in hypertension. Evidences show that microglia are activated and release proinflammatory cytokines in angiocardiopathy. We hypothesized that angiotensin II induces PVN microglial activation, and the activated PVN microglia release proinflammatory cytokines and cause oxidative stress through nuclear factor-kappa B (NF-κB) pathway, which contributes to sympathetic overactivity and hypertension. Male Sprague-Dawley rats (weight 275-300 g) were infused with angiotensin II to induce hypertension. Then, rats were treated with bilateral PVN infusion of microglial activation inhibitor minocycline, NF-κB activation inhibitor pyrrolidine dithiocarbamate or vehicle for 4 weeks. When compared to control groups, angiotensin II-induced hypertensive rats had higher mean arterial pressure, PVN proinflammatory cytokines, and imbalance of neurotransmitters, accompanied with PVN activated microglia. These rats also had more PVN gp91phox (source of reactive oxygen species production), and NF-κB p65. Bilateral PVN infusion of minocycline or pyrrolidine dithiocarbamate partly or completely ameliorated these changes. This study indicates that angiotensin II-induced hypertensive rats have more activated microglia in PVN, and activated PVN microglia release proinflammatory cytokines and result in oxidative stress, which contributes to sympathoexcitation and hypertensive response. Suppression of activated PVN microglia by minocycline or pyrrolidine dithiocarbamate attenuates inflammation and oxidative stress, and improves angiotensin II-induced hypertension, which indicates that activated microglia promote hypertension through activated NF-κB. The findings may offer hypertension new strategies.


Subject(s)
Hypertension , Minocycline , Rats , Male , Animals , Minocycline/adverse effects , Microglia/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Reactive Oxygen Species/adverse effects , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Angiotensin II/adverse effects , Angiotensin II/metabolism , Rats, Sprague-Dawley , Hypertension/drug therapy , Cytokines/metabolism , Neurotransmitter Agents/adverse effects , Neurotransmitter Agents/metabolism
19.
Langmuir ; 38(46): 14192-14199, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36355438

ABSTRACT

In this study, a one-step method of polyethylenimine (PEI) cross-linking graphene oxide (GO) was used to prepare a 3D pore-structured adsorbent with abundant amine groups for chemisorption of CO2. The cross-linking of PEI with GO sheets and the vacuum freeze-drying step are the keys to the formation of the 3D pore structure. The results of characterization analysis revealed that the as-prepared adsorbent had a 3D porous structure rich in amine groups. Besides, the adsorption/desorption test showed that the prepared adsorbent has excellent and stable adsorption performance, and the maximum CO2 adsorption capacity is 2.18 mmol/g at 343 K and 10 vol % CO2. Moreover, the adsorption kinetics analysis indicated that the adsorption process was dominated by homogeneous adsorption, and the adsorbent had a strong affinity with CO2. Finally, the correlation analysis shows that the kinetic constants obtained by the Avrami model simulation can be effectively used for the actual CO2 adsorption process design.

20.
Nutrients ; 14(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36235829

ABSTRACT

BACKGROUND: The hypothalamic paraventricular nucleus (PVN) is an important nucleus in the brain that plays a key role in regulating sympathetic nerve activity (SNA) and blood pressure. Silent mating-type information regulation 2 homolog-1 (sirtuin1, SIRT1) not only protects cardiovascular function but also reduces inflammation and oxidative stress in the periphery. However, its role in the central regulation of hypertension remains unknown. It is hypothesized that SIRT1 activation by resveratrol may reduce SNA and lower blood pressure through the regulation of intracellular reactive oxygen species (ROS) and neurotransmitters in the PVN. METHODS: The two-kidney one-clip (2K1C) method was used to induce renovascular hypertension in male Sprague-Dawley rats. Then, bilaterally injections of vehicle (artificial cerebrospinal fluid, aCSF, 0.4 µL) or resveratrol (a SIRT1 agonist, 160 µmol/L, 0.4 µL) into rat PVN were performed for four weeks. RESULTS: PVN SIRT1 expression was lower in the hypertension group than the sham surgery (SHAM) group. Activated SIRT1 within the PVN lowered systolic blood pressure and plasma norepinephrine (NE) levels. It was found that PVN of 2K1C animals injected with resveratrol exhibited increased expression of SIRT1, copper-zinc superoxide dismutase (SOD1), and glutamic acid decarboxylase (GAD67), as well as decreased activity of nuclear factor-kappa B (NF-κB) p65 and NAD(P)H oxidase (NOX), particularly NOX4. Treatment with resveratrol also decreased expression of ROS and tyrosine hydroxylase (TH). CONCLUSION: Resveratrol within the PVN attenuates hypertension via the SIRT1/NF-κB pathway to decrease ROS and restore the balance of excitatory and inhibitory neurotransmitters.


Subject(s)
Hypertension , Paraventricular Hypothalamic Nucleus , Animals , Copper/metabolism , Glutamate Decarboxylase/metabolism , Male , NADPH Oxidases/metabolism , NF-kappa B/metabolism , Neurotransmitter Agents/metabolism , Norepinephrine/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Resveratrol/metabolism , Resveratrol/pharmacology , Sirtuin 1/genetics , Sirtuin 1/metabolism , Superoxide Dismutase-1/metabolism , Sympathetic Nervous System/metabolism , Tyrosine 3-Monooxygenase/metabolism , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...