Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(32): 12289-12299, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37548190

ABSTRACT

Double emulsions hold great potential for various applications due to their compartmentalized internal structures. However, achieving their long-term physical stability remains a challenging task. Here, we present a simple one-step method for producing stable oil-in-water-in-oil (O/W/O) double emulsions using biocompatible gliadin/ethyl cellulose complex particles as the sole stabilizer. The resulting O/W/O systems serve as effective platforms for encapsulating enzymes and as templates for synthesizing porous microspheres. We investigated the impact of particle concentration and water fraction on the properties of Pickering O/W/O emulsions. Our results demonstrate that the number and volume of inner oil droplets increased proportionally with both the water fraction and particle concentration after a 60-day storage period. Moreover, the catalytic reaction rate of the encapsulated lipase within the double emulsion exhibited a significant acceleration, achieving a substrate conversion of 80.9% within 15 min. Remarkably, the encapsulated enzyme showed excellent recyclability, enabling up to 10 cycles of reuse. Additionally, by utilizing the O/W/O systems as templates, we successfully obtained porous microspheres whose size can be controlled by the outer water droplet. These findings have significant implications for the future design of Pickering complex emulsion-based systems, opening avenues for extensive applications in pharmaceuticals, food, cosmetics, material synthesis, and (bio)catalysis.


Subject(s)
Cellulose , Gliadin , Emulsions/chemistry , Gliadin/chemistry , Cellulose/chemistry , Excipients , Water/chemistry , Particle Size
2.
Med Oncol ; 40(9): 267, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37567972

ABSTRACT

Estrogen receptor-positive (ER+) breast cancer represents approximately two-thirds of all breast cancers and has a sustained risk of late disease recurrence. Combining cyclin-dependent kinase 4/6 (CDK4/6) inhibitors with anti-estrogen therapies significantly improves ER+ advanced breast cancer clinical outcomes. Despite promising clinical outcomes, intrinsic or acquired resistance to CDK4/6 inhibitors has limited their success. We used CRISPR to screen MCF-7 cells to explore the targets whose inhibition is synthetic lethal with CDK4/6 inhibitors in ER+ breast cancer cells. We found that GATA zinc finger domain containing 1 (GATAD1) is a new synthetic lethal target with CDK4/6 inhibitors in ER+ breast cancer cells. Mechanistically, GATAD1 promotes cell proliferation by transcriptionally inhibiting p21 in ER+ breast cancer cells. GATAD1 depletion decreased the phosphorylation of CDK2/4 and RB transcriptional corepressor 1 (RB1), inducing cell cycle arrest. P21 overexpression abolished the enhanced proliferation induced by GATAD1 overexpression. Our results identify GATAD1 as a therapeutic target in ER+ breast cancer, which is beneficial to provide a novel treatment strategy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptors, Estrogen/metabolism , Cyclin-Dependent Kinase 4/metabolism , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Cyclin-Dependent Kinase 6 , Neoplasm Recurrence, Local , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm , Eye Proteins/therapeutic use
3.
Adv Sci (Weinh) ; 10(5): e2205483, 2023 02.
Article in English | MEDLINE | ID: mdl-36529692

ABSTRACT

Rab22a-NeoF fusion protein has recently been reported as a promising target for osteosarcoma lung metastasis. However, how this fusion protein is regulated in cells remains unknown. Here, using multiple screenings, it is reported that Rab22a-NeoF1 fusion protein is degraded by an E3 ligase STUB1 via the autophagy receptor NDP52-mediated lysosome pathway, which is facilitated by PINK1 kinase. Mechanistically, STUB1 catalyzes the K63-linked ubiquitin chains on lysine112 of Rab22a-NeoF1, which is responsible for the binding of Rab22a-NeoF1 to NDP52, resulting in lysosomal degradation of Rab22a-NeoF1. PINK1 is able to phosphorylate Rab22a-NeoF1 at serine120, which promotes ubiquitination and degradation of Rab22a-NeoF1. Consistently, by upregulating PINK1, Sorafenib and Regorafenib can inhibit osteosarcoma lung metastasis induced by Rab22a-NeoF1. These findings reveal that the lysosomal degradation of Rab22a-NeoF1 fusion protein is targetable for osteosarcoma lung metastasis, proposing that Sorafenib and Regorafenib may benefit cancer patients who are positive for the RAB22A-NeoF1 fusion gene.


Subject(s)
Lung Neoplasms , Oncogene Proteins, Fusion , Osteosarcoma , Humans , Lung Neoplasms/secondary , Lysosomes/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Protein Kinases/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Sorafenib/metabolism , Ubiquitin-Protein Ligases/metabolism , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/therapeutic use
4.
Technol Cancer Res Treat ; 21: 15330338221090847, 2022.
Article in English | MEDLINE | ID: mdl-35443832

ABSTRACT

INTRODUCTION: Radiotherapy is one of the most effective ways to treat lung cancer. Accurately delineating the gross target volume is a key step in the radiotherapy process. In current clinical practice, the target area is still delineated manually by radiologists, which is time-consuming and laborious. However, these problems can be better solved by deep learning-assisted automatic segmentation methods. METHODS: In this paper, a 3D CNN model named 3D ResSE-Unet is proposed for gross tumor volume segmentation for stage III NSCLC radiotherapy. This model is based on 3D Unet and combines residual connection and channel attention mechanisms. Three-dimensional convolution operation and encoding-decoding structure are used to mine three-dimensional spatial information of tumors from computed tomography data. Inspired by ResNet and SE-Net, residual connection and channel attention mechanisms are used to improve segmentation performance. A total of 214 patients with stage III NSCLC were collected selectively and 148 cases were randomly selected as the training set, 30 cases as the validation set, and 36 cases as the testing set. The segmentation performance of models was evaluated by the testing set. In addition, the segmentation results of different depths of 3D Unet were analyzed. And the performance of 3D ResSE-Unet was compared with 3D Unet, 3D Res-Unet, and 3D SE-Unet. RESULTS: Compared with other depths, 3D Unet with four downsampling depths is more suitable for our work. Compared with 3D Unet, 3D Res-Unet, and 3D SE-Unet, 3D ResSE-Unet can obtain superior results. Its dice similarity coefficient, 95th-percentile of Hausdorff distance, and average surface distance can reach 0.7367, 21.39mm, 4.962mm, respectively. And the average time cost of 3D ResSE-Unet to segment a patient is only about 10s. CONCLUSION: The method proposed in this study provides a new tool for GTV auto-segmentation and may be useful for lung cancer radiotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Humans , Image Processing, Computer-Assisted , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Tomography, X-Ray Computed , Tumor Burden
5.
J Agric Food Chem ; 68(40): 11261-11272, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32806120

ABSTRACT

Porous materials derived from natural and biodegradable polymers have received growing interest. We demonstrate here an attractive method for the preparation of protein-based porous materials using emulsions stabilized by gliadin-chitosan hybrid particles (GCHPs) as the template, with the addition of gelatin and kosmotropic ions to improve the mechanical strength. The microstructure, mechanical properties, cytotoxicity, and fluid absorption behavior of porous materials were systematically investigated. This strategy facilitated the formation of porous materials with highly open and interconnected pore structure, which can be manipulated by altering the mass ratio of hexane or gelatin in the matrix. The Hofmeister effect resulted from kosmotropic ions greatly enhanced the Young's modulus and the compressive stress at 40% strain of porous materials from 0.56 to 6.84 MPa and 0.26 to 1.11 MPa, respectively. The developed all-natural porous materials were nontoxic to HaCaT cells; they also had excellent liquid (i.e., simulated body fluid and rabbit blood) absorption performance and advantages in resisting stress and maintaining geometry shape. The effects of different concentration amounts and type of salts in the Hofmeister series on the formation and performance of porous materials were also explored. Mechanical strength of porous materials was gradually enhanced when the (NH4)2SO4 concentration increased from 0 to 35 wt %, and the other four kosmotropic salts, including Na2S2O3, Na2CO3, NaH2PO4, and Na2SO4, also showed positive effects. This work opens a simple and feasible way to produce nontoxic and biodegradable porous materials with favorable mechanical strength and controllable pore structure. These materials have broad potential application in many fields involving biomedical and material science, such as cell culture, (bio)catalysis, and wound or bone defect healing.


Subject(s)
Biocompatible Materials/chemistry , Emulsions/chemistry , Gliadin/chemistry , Biomechanical Phenomena , Chitosan/chemistry , Elastic Modulus , Gelatin/chemistry , HaCaT Cells , Humans , Materials Testing , Polymers/chemistry , Porosity
6.
J Agric Food Chem ; 67(12): 3423-3431, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30835109

ABSTRACT

Pickering high internal-phase emulsions (HIPEs) and porous materials derived from the Pickering HIPEs have received increased attention in various research fields. Nevertheless, nondegradable inorganic and synthetic stabilizers present toxicity risks, thus greatly limiting their wider applications. In this work, we successfully developed nontoxic porous materials through the Pickering HIPE-templating process without chemical reactions. The obtained porous materials exhibited appreciable absorption capacity to corn oil and reached the state of saturated absorption within 3 min. The Pickering HIPE templates were stabilized by gliadin-chitosan complex particles (GCCPs), in which the volume fraction of the dispersed phase (90%) was the highest of all reported food-grade-particle-stabilized Pickering HIPEs so far, further contributing to the interconnected pore structure and high porosity (>90%) of porous materials. The interfacial particle barrier (Pickering mechanism) and three-dimensional network formed by the GCCPs in the continuous phase play crucial roles in stabilization of HIPEs with viscoelastic and self-supporting attributes and also facilitate the development of porous materials with designed pore structure. These materials, with favorable biocompatibility and biodegradability, possess excellent application prospects in foods, pharmaceuticals, materials, environmental applications, and so on.


Subject(s)
Chitosan/chemistry , Gliadin/chemistry , Emulsions/chemistry , Particle Size , Plant Oils/chemistry , Porosity , Zea mays/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...