Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Nature ; 631(8021): 521-525, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961304

ABSTRACT

Atomic-scale observations of a specific local area would be considerably beneficial when exploring new fundamental materials and devices. The development of hardware-type aberration correction1,2 in electron microscopy has enabled local structural observations with atomic resolution3-5 as well as chemical and vibration analysis6-8. In magnetic imaging, however, atomic-level spin configurations are analysed by electron energy-loss spectroscopy by placing samples in strong magnetic fields9-11, which destroy the nature of the magnetic ordering in the samples. Although magnetic-field-free observations can visualize the intrinsic magnetic fields of an antiferromagnet by unit-cell averaging12, directly observing the magnetic field of an individual atomic layer of a non-uniform structure is challenging. Here we report that the magnetic fields of an individual lattice plane inside materials with a non-uniform structure can be observed under magnetic-field-free conditions by electron holography with a hardware-type aberration corrector assisted by post-digital aberration correction. The magnetic phases of the net magnetic moments of (111) lattice planes formed by opposite spin orderings between Fe3+ and Mo5+ in a ferrimagnetic double-perovskite oxide (Ba2FeMoO6) were successfully observed. This result opens the door to direct observations of the magnetic lattice in local areas, such as interfaces and grain boundaries, in many materials and devices.

2.
ACS Nano ; 18(28): 18246-18256, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38975730

ABSTRACT

The realization of above room-temperature ferromagnetism in the two-dimensional (2D) magnet Fe5GeTe2 represents a major advance for the use of van der Waals (vdW) materials in practical spintronic applications. In particular, observations of magnetic skyrmions and related states within exfoliated flakes of this material provide a pathway to the fine-tuning of topological spin textures via 2D material heterostructure engineering. However, there are conflicting reports as to the nature of the magnetic structures in Fe5GeTe2. The matter is further complicated by the study of two types of Fe5GeTe2 crystals with markedly different structural and magnetic properties, distinguished by their specific fabrication procedure: whether they are slowly cooled or rapidly quenched from the growth temperature. In this work, we combine X-ray and electron microscopy to observe the formation of magnetic stripe domains, skyrmion-like type-I, and topologically trivial type-II bubbles, within exfoliated flakes of Fe5GeTe2. The results reveal the influence of the magnetic ordering of the Fe1 sublattice below 150 K, which dramatically alters the magnetocrystalline anisotropy and leads to a complex magnetic phase diagram and a sudden change of the stability of the magnetic textures. In addition, we highlight the significant differences in the magnetic structures intrinsic to slow-cooled and quenched Fe5GeTe2 flakes.

3.
Commun Phys ; 7(1): 159, 2024.
Article in English | MEDLINE | ID: mdl-38779470

ABSTRACT

In helimagnetic metals, ac current-driven spin motions can generate emergent electric fields acting on conduction electrons, leading to emergent electromagnetic induction (EEMI). Recent experiments reveal the EEMI signal generally shows a strongly current-nonlinear response. In this study, we investigate the EEMI of Tb5Sb3, a short-period helimagnet. Using small angle neutron scattering we show that Tb5Sb3 hosts highly disordered helimagnetism with a distribution of spin-helix periodicity. The current-nonlinear dynamics of the disordered spin helix in Tb5Sb3 indeed shows up as the nonlinear electrical resistivity (real part of ac resistivity), and even more clearly as a nonlinear and huge EEMI (imaginary part of ac resistivity) response. The magnitude of the EEMI reaches as large as several tens of µH for Tb5Sb3 devices on the scale of several tens of µm, originating to noncollinear spin textures possibly even without long-range helimagnetic order.

4.
Adv Mater ; 36(16): e2311737, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219021

ABSTRACT

Topological magnetic (anti)skyrmions are robust string-like objects heralded as potential components in next-generation topological spintronics devices due to their low-energy manipulability via stimuli such as magnetic fields, heat, and electric/thermal current. While these 2D topological objects are widely studied, intrinsically 3D electron-spin real-space topology remains less explored despite its prevalence in bulky magnets. 2D-imaging studies reveal peculiar vortex-like contrast in the core regions of spin textures present in antiskyrmion-hosting thin plate magnets with S4 crystal symmetry, suggesting a more complex 3D real-space structure than the 2D model suggests. Here, holographic vector field electron tomography captures the 3D structure of antiskyrmions in a single-crystal, precision-doped (Fe0.63Ni0.3Pd0.07)3P (FNPP) lamellae at room temperature and zero field. These measurements reveal hybrid string-like solitons composed of skyrmions with topological number W = -1 on the lamellae's surfaces and an antiskyrmion (W = + 1) connecting them. High-resolution images uncover a Bloch point quadrupole (four magnetic (anti)monopoles that are undetectable in 2D imaging) which enables the observed lengthwise topological transitions. Numerical calculations corroborate the stability of hybrid strings over their conventional (anti)skyrmion counterparts. Hybrid strings result in topological tuning, a tunable topological Hall effect, and the suppression of skyrmion Hall motion, disrupting existing paradigms within spintronics.

5.
Adv Mater ; 36(1): e2306441, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712832

ABSTRACT

The spontaneous formation and topological transitions of vortex-antivortex pairs have implications for a broad range of emergent phenomena, for example, from superconductivity to quantum computing. Unlike magnets exhibiting collinear spin textures, helimagnets with noncollinear spin textures provide unique opportunities to manipulate topological forms such as (anti)merons and (anti)skyrmions. However, it is challenging to achieve multiple topological states and their interconversion in a single helimagnet due to the topological protection for each state. Here, the on-demand creation of multiple topological states in a helimagnet Fe0.5 Co0.5 Ge, including a spontaneous vortex pair of meron with topological charge N = -1/2 and antimeron with N = 1/2, and a vortex-antivortex bundle, that is, a bimeron (meron pair) with N = -1 is reported. The mutual transformation between skyrmions and bimerons with respect to the competitive effects of magnetic field and magnetic shape anisotropy is demonstrated. It is shown that electric currents drive the individual bimerons to form their connecting assembly and then into a skyrmion lattice. These findings signify the feasibility of designing topological states and offer new insights into the manipulation of noncollinear spin textures for potential applications in various fields.

6.
Nat Commun ; 14(1): 7094, 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37925467

ABSTRACT

The use of magnetic states in memory devices has a history dating back decades, and the experimental discovery of magnetic skyrmions and subsequent demonstrations of their control via magnetic fields, heat, and electric/thermal currents have ushered in a new era for spintronics research and development. Recent studies have experimentally discovered the antiskyrmion, the skyrmion's antiparticle, and while several host materials have been identified, control via thermal current remains elusive. In this work, we use thermal current to drive the transformation between skyrmions, antiskyrmions and non-topological bubbles, as well as the switching of helical states in the antiskyrmion-hosting ferromagnet (Fe0.63Ni0.3Pd0.07)3P at room temperature. We discover that a temperature gradient [Formula: see text] drives a transformation from antiskyrmions to non-topological bubbles to skyrmions while under a magnetic field and observe the opposite, unidirectional transformation from skyrmions to antiskyrmions at zero-field, suggesting that the antiskyrmion, more so than the skyrmion, is robustly metastable at zero field.

7.
Adv Mater ; 35(20): e2210646, 2023 May.
Article in English | MEDLINE | ID: mdl-36871172

ABSTRACT

3D topological spin textures-hopfions-are predicted in helimagnetic systems but are not experimentally confirmed thus far. By utilizing an external magnetic field and electric current in the present study, 3D topological spin textures are realized, including fractional hopfions with nonzero topological index, in a skyrmion-hosting helimagnet FeGe. Microsecond current pulses are employed to control the dynamics of the expansion and contraction of a bundle composed of a skyrmion and a fractional hopfion, as well as its current-driven Hall motion. This research approach has demonstrated the novel electromagnetic properties of fractional hopfions and their ensembles in helimagnetic systems.

8.
Adv Mater ; 35(12): e2208930, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36637996

ABSTRACT

Topological charge plays a significant role in a range of physical systems. In particular, observations of real-space topological objects in magnetic materials have been largely limited to skyrmions - states with a unitary topological charge. Recently, more exotic states with varying topology, such as antiskyrmions, merons, or bimerons and 3D states such as skyrmion strings, chiral bobbers, and hopfions, have been experimentally reported. Along these lines, the realization of states with higher-order topology has the potential to open new avenues of research in topological magnetism and its spintronic applications. Here, real-space imaging of such spin textures, including skyrmion, skyrmionium, skyrmion bag, and skyrmion sack states, observed in exfoliated flakes of the van der Waals magnet Fe3-x GeTe2 (FGT) is reported. These composite skyrmions may emerge from seeded, loop-like states condensed into the stripe domain structure, demonstrating the possibility to realize spin textures with arbitrary integer topological charge within exfoliated flakes of 2D magnets. The general nature of the formation mechanism motivates the search for composite skyrmion states in both well-known and new magnetic materials, which may yet reveal an even richer spectrum of higher-order topological objects.

9.
Nano Lett ; 22(23): 9358-9364, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36383503

ABSTRACT

Nanometric topological spin textures, such as skyrmions (Sks) and antiskyrmions (antiSks), have attracted much attention recently. However, most studies have focused on two-dimensional spin textures in films with inherent or synthetic antisymmetric spin-exchange interaction, termed Dzyaloshinskii-Moriya interaction, although three-dimensional (3D) topological spin textures, such as antiSks composed of alternating Bloch- and Néel-type spin spirals, chiral bobbers carrying emergent magnetic monopoles, and deformed Sk strings, are ubiquitous. To elucidate these textures, we have developed a 3D nanometric magnetic imaging technique, tomographic Lorentz transmission electron microscopy (TEM). The approach enables the visualization of the 3D shape of magnetic objects and their 3D vector field mapping. Here we report 3D vector field maps of deformed Sk-strings and antiSk using the technique. This research approach will lead to discoveries and understanding of fertile 3D magnetic structures in a broad class of magnets, providing insight into 3D topological magnetism.


Subject(s)
Imaging, Three-Dimensional , Magnets , Microscopy, Electron, Transmission
10.
Proc Natl Acad Sci U S A ; 119(41): e2200958119, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36191237

ABSTRACT

The manipulation and control of electron spins, the fundamental building blocks of magnetic domains and spin textures, are at the core of spintronics. Of particular interest is the effect of the electric current on topological magnetic skyrmions, such as the current-induced deformation of isolated skyrmions. The deformation has consequences ranging from perturbed dynamics to modified packing configurations. In this study, we measured the current-driven real-space deformation of isolated, pinned skyrmions within Co10Zn10 at room temperature. We observed that the skyrmions are surprisingly soft, readily deforming during electric current application into an elliptical shape with a well-defined deformation axis (semimajor axis). We found that this axis rotates unidirectionally toward the current direction irrespective of electric current polarity and that the elliptical deformation reverses back upon current termination. We quantified the average distortion δ, which increased by ∼90% during the largest applied current density |j| = 8.46 ×109 A/m2 when compared with the skyrmion's intrinsic shape ([Formula: see text]). Additionally, we demonstrated an approximately 120% average skyrmion core size expansion during current application, highlighting the skyrmions' inherent topological protection. This evaluation of in situ electric current-induced skyrmion deformation paints a clearer picture of spin-polarized electron-skyrmion interactions and may prove essential in designing spintronic devices.

11.
Adv Sci (Weinh) ; 9(28): e2202950, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35978271

ABSTRACT

Magnetic skyrmions and antiskyrmions have attracted much interest owing to their topological features and spintronic functionalities. In contrast to skyrmions, the generation of antiskyrmions relies on tunning both the magnitude and direction of the external magnetic field. Here, it is reported that antiskyrmions can be efficiently created via quenching and robustly persist at zero field in the Fe1.9 Ni0.9 Pd0.2 P magnet with the S4 -symmetry. It is demonstrated that well-ordered antiskyrmions form in a square lattice in a confining micrometer-scale square geometry, while the antiskyrmion lattice distorts in triangular, circular, or rotated-square geometry; the distortion depends on the relative configuration between sample edges and the two q-vectors arising from the anisotropic Dzyaloshinskii-Moriya interaction, in good agreement with micromagnetic simulations. It is also characterized transformations from antiskyrmions to skyrmions and nontopological bubbles at different directions and values of external field. These results demonstrate a roadmap for generating and controlling antiskyrmions in a confining geometry.

12.
Adv Mater ; 34(11): e2108770, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35032408

ABSTRACT

Magnetic skyrmions, vortex-like topological spin textures, have attracted much interest in a wide range of research fields from fundamental physics to spintronics applications. Recently, growing attention is also paid to antiskyrmions emerging with opposite topological charge in non-centrosymmetric magnets with D2d or S4 symmetry. In these magnets, complex interplay among anisotropic Dzyaloshinskii-Moriya interaction, uniaxial magnetic anisotropy, and magnetic dipolar interactions generates various magnetic textures. However, the precise role of these magnetic interactions in stabilizing antiskyrmions remains to be elucidated. In this work, the uniaxial magnetic anisotropy of schreibersite (Fe,Ni)3 P with S4 symmetry is controlled by doping and its impact on the stability of antiskyrmions is investigated. The authors' magnetometry study, supported by ferromagnetic resonance spectroscopy, shows that the variation of the Ni content and slight doping with 4d transition metals considerably change the magnetic anisotropy. In particular, doping with Pd induces easy-axis anisotropy, giving rise to formation of antiskyrmions, while a temperature-induced spin reorientation is observed in an Rh-doped compound. In combination with Lorentz transmission electron microscopy and micromagnetic simulations, the stability of antiskyrmion as functions of uniaxial anisotropy and demagnetization energy is quantitatively analyzed, and demonstrated that subtle balance between them is necessary to stabilize the antiskyrmions.

13.
Nat Mater ; 21(3): 305-310, 2022 03.
Article in English | MEDLINE | ID: mdl-35087239

ABSTRACT

The concept of topology has dramatically expanded the research landscape of magnetism, leading to the discovery of numerous magnetic textures with intriguing topological properties. A magnetic skyrmion is an emergent topological magnetic texture with a string-like structure in three dimensions and a disk-like structure in one and two dimensions. Skyrmions in zero dimensions have remained elusive due to challenges from many competing orders. Here, by combining electron holography and micromagnetic simulations, we uncover the real-space magnetic configurations of a skyrmionic vortex structure confined in a B20-type FeGe tetrahedral nanoparticle. An isolated skyrmionic vortex forms at the ground state and this texture shows excellent robustness against temperature without applying a magnetic field. Our findings shed light on zero-dimensional geometrical confinement as a route to engineer and manipulate individual skyrmionic metastructures.


Subject(s)
Nanoparticles
14.
Nat Commun ; 12(1): 6797, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34819505

ABSTRACT

Driving and controlling single-skyrmion motion promises skyrmion-based spintronic applications. Recently progress has been made in moving skyrmionic bubbles in thin-film heterostructures and low-temperature chiral skyrmions in the FeGe helimagnet by electric current. Here, we report the motion tracking and control of a single skyrmion at room temperature in the chiral-lattice magnet Co9Zn9Mn2 using nanosecond current pulses. We have directly observed that the skyrmion Hall motion reverses its direction upon the reversal of skyrmion topological number using Lorentz transmission electron microscopy. Systematic measurements of the single-skyrmion trace as a function of electric current reveal a dynamic transition from the static pinned state to the linear flow motion via a creep event, in agreement with the theoretical prediction. We have clarified the role of skyrmion pinning and evaluated the intrinsic skyrmion Hall angle and the skyrmion velocity in the course of the dynamic transition. Our results pave a way to skyrmion applications in spintronic devices.

15.
Nat Commun ; 12(1): 5079, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34426575

ABSTRACT

Thermal-current induced electron and spin dynamics in solids -dubbed "caloritronics"- have generated widespread interest in both fundamental physics and spintronics applications. Here, we examine the dynamics of nanometric topological spin textures, skyrmions driven by a temperature gradient ∇T or heat flow, that are evaluated through in-situ real-space observations in an insulating helimagnet Cu2OSeO3. We observe increases of the skyrmion velocity and the Hall angle with increasing ∇T above a critical value of ~ 13 mK/mm, which is two orders of magnitude lower than the ∇T required to drive ferromagnetic domain walls. A comparable magnitude of ∇T is also observed to move the domain walls between a skyrmion domain and the non-topological conical-spin domain from cold to hot regions. Our results demonstrate the efficient manipulation of skyrmions by temperature gradients, a promising step towards energy-efficient "green" spintronics.

16.
Pak J Pharm Sci ; 34(1(Special)): 465-472, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34275795

ABSTRACT

This study aimed to investigate the application effect of tirofiban on percutaneous coronary intervention (PCI) in patients with acute coronary syndrome (ACS) and its postoperative effect on C-X-C motif chemokine ligand 16 (CXCL16) level and myocardial perfusion. A total of 50 cases of patients diagnosed with acute coronary syndrome and treated in Sunshine Union Hospital (Weifang, China) were included in group A and 30 cases of healthy subjects underwent physical examination in our hospital during the same period were enrolled in group B. Tirofiban was used in group A patients during PCI. Clinical efficacy evaluation criteria were used to evaluate the efficacy after treatment. The level of CXCL16 in serum before and after treatment was detected by qRT-PCR. Receiver operating characteristic (ROC) curve was drawn to analyze the value of C-X-C Motif Chemokine Ligand in diagnosing ACS. Before treatment, CXCL16 level in group A was significantly higher than that in group B (p<0.001). After treatment, patients in TMPG grade 3 in group A were significantly increased (p<0.001). Tirofiban could improve myocardial perfusion in patients with ACS after PCI, reduce adverse events and CXCL16 levels. Serum CXCL16 is expected to be a potential diagnostic and therapeutic predictor of ACS.


Subject(s)
Acute Coronary Syndrome/therapy , Percutaneous Coronary Intervention/methods , Platelet Aggregation Inhibitors/therapeutic use , Tirofiban/therapeutic use , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/metabolism , Aged , Case-Control Studies , Chemokine CXCL16/metabolism , Female , Humans , Male , Middle Aged , Treatment Outcome
17.
Sci Adv ; 7(25)2021 Jun.
Article in English | MEDLINE | ID: mdl-34134977

ABSTRACT

Magnetic skyrmions are self-organized topological spin textures that behave like particles. Because of their fast creation and typically long lifetime, experimental verification of skyrmion's creation/annihilation processes has been challenging. Here, we successfully track skyrmion dynamics in defect-introduced Co9Zn9Mn2 by using pump-probe Lorentz transmission electron microscope. Following the nanosecond photothermal excitation, we resolve 160-nm skyrmion's proliferation at <1 ns, contraction at 5 ns, drift from 10 ns to 4 µs, and coalescence at ~5 µs. These motions relay the multiscale arrangement and relaxation of skyrmion clusters in a repeatable cycle of 20 kHz. Such repeatable dynamics of skyrmions, arising from the weakened but still persistent topological protection around defects, enables us to visualize the whole life of the skyrmions and demonstrates the possible high-frequency manipulations of topological charges brought by skyrmions.

18.
Nat Commun ; 12(1): 317, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436576

ABSTRACT

The electrical Hall effect can be significantly enhanced through the interplay of the conduction electrons with magnetism, which is known as the anomalous Hall effect (AHE). Whereas the mechanism related to band topology has been intensively studied towards energy efficient electronics, those related to electron scattering have received limited attention. Here we report the observation of giant AHE of electron-scattering origin in a chiral magnet MnGe thin film. The Hall conductivity and Hall angle, respectively, reach [Formula: see text] Ω-1 cm-1 and [Formula: see text]% in the ferromagnetic region, exceeding the conventional limits of AHE of intrinsic and extrinsic origins, respectively. A possible origin of the large AHE is attributed to a new type of skew-scattering via thermally excited spin-clusters with scalar spin chirality, which is corroborated by the temperature-magnetic-field profile of the AHE being sensitive to the film-thickness or magneto-crystalline anisotropy. Our results may open up a new platform to explore giant AHE responses in various systems, including frustrated magnets and thin-film heterostructures.

19.
Nat Mater ; 20(3): 335-340, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33495630

ABSTRACT

Topological spin textures have attracted much attention both for fundamental physics and spintronics applications. Among them, antiskyrmions possess a unique spin configuration with Bloch-type and Néel-type domain walls owing to anisotropic Dzyaloshinskii-Moriya interaction in the non-centrosymmetric crystal structure. However, antiskyrmions have thus far only been observed in a few Heusler compounds with D2d symmetry. Here we report a new material, Fe1.9Ni0.9Pd0.2P, in a different symmetry class (S4), in which antiskyrmions exist over a wide temperature range that includes room temperature, and transform into skyrmions on changing magnetic field and lamella thickness. The periodicity of magnetic textures greatly depends on the crystal thickness, and domains with anisotropic sawtooth fractals were observed at the surface of thick crystals and attributed to the interplay between the dipolar interaction and the Dzyaloshinskii-Moriya interaction as governed by crystal symmetry. Our findings provide an arena in which to study antiskyrmions, and should stimulate further research on topological spin textures and their applications.

20.
Adv Mater ; 32(46): e2004206, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33043519

ABSTRACT

Much scientific capital has been directed toward exotic magnetic spin textures called Bloch lines, that is, Néel-type line boundaries within domain walls, because their geometry promises high-density magnetic storage. While predicted to arise in high-anisotropy magnets, bulk soft magnets, and thin films with in-plane magnetization, Bloch lines also constitute magnetic antiskyrmions, that is, topological antiparticles of skyrmions. Most domain walls occur as Bloch-type or Néel-type, in which the magnetization rotates parallel or perpendicular to the domain wall across its profile, respectively. The Bloch lines' Néel-type rotation and their minute size make them difficult to directly measure. This work utilizes differential phase contrast (DPC) scanning transmission electron microscopy (STEM) to measure the in-plane magnetization of Bloch lines within antiskyrmions emergent in a non-centrosymmetric Heusler magnet with D2d symmetry, Mn1.4 Pt0.9 Pd0.1 Sn, in addition to Bloch-type skyrmions in an FeGe magnet with B20-type crystal structure to benchmark the DPC technique. Both in-focus measurement and identification of Bloch lines at the antiskyrmion's corners are provided.

SELECTION OF CITATIONS
SEARCH DETAIL
...