Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 19(20): 18893-902, 2011 Sep 26.
Article in English | MEDLINE | ID: mdl-21996831

ABSTRACT

Temperature-dependent picosecond non-degenerate four-wave-mixing experiments were performed to explore the carrier dynamics in an InGaN/GaN multiple quantum well sample, in which light emission enhancement with surface plasmon (SP) coupling has been identified. In the time-resolved photoluminescence results, we can identify the faster carrier decay time of the sample with surface plasmon coupling. The faster decay time is due to this sample's ability to create additional channels for effective carrier recombination. In the four-wave-mixing results, a slower grating decay time of the sample with surface plasmon coupling was measured. The diffusion coefficients and surface recombination velocities of photo-created carriers were estimated by modeling the decay rate of transient grating signals. For the sample for which surface plasmon coupling exists, smaller diffusion coefficients and slower surface recombination velocities can be estimated when the temperatures are above 150 K. The carriers coupling with some SP modes is not the only mechanism contributing to emission enhancement. In the InGaN/GaN multiple quantum well sample, surface recombination suppressed by SP coupling is another factor for increased light emission efficiency.


Subject(s)
Computer Simulation , Gallium/chemistry , Light , Luminescence , Nanotechnology/methods , Optics and Photonics , Surface Plasmon Resonance/methods , Equipment Design , Fourier Analysis , Immunosuppressive Agents , Quantum Theory , Temperature
2.
Opt Express ; 19(17): 16390-400, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21935002

ABSTRACT

This study demonstrates a non-degenerate pump-probe spectroscopy with a white light beam probe based on a regenerative, amplified, mode-locked, Ti:sapphire laser. This white light beam probe is produced by supercontinuum generation of sapphire crystal after ultra-short pulse excitation. To implement the pump-probe experimental operation, the ablation dynamics with and without fresh spot measurements in fused silica samples are demonstrated. Combining the time-resolved differential reflection profiles in the white light range and X-ray photoelectron spectroscopy spectra of fused silica, the following ablation dynamics processes can be observed: Without fresh spot measurements, once carriers are excited, first, the three absorption bands of the intrinsic defect sites are observed within 750 fs. Then, a fast recovery is observed. This recovery comes from defect-trapped carriers excited to conduction bands through hot-carrier-phonon interactions. In the final step, a rapidly rising signal is observed after 800 fs. This signal rise comes from the creation of free-electron plasma, the density of which increases with increasing excitation energy accumulation. With fresh spot measurements, time delay of carrier dynamics among the three bands can be identified clearly within 750 fs. The intrinsic defect sites of fused silica play the key role during the ultrafast laser ablation process.

SELECTION OF CITATIONS
SEARCH DETAIL
...