Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phenomics ; 3(1): 101-118, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36939794

ABSTRACT

Quantification of brain oxygenation and metabolism, both of which are indicators of the level of brain activity, plays a vital role in understanding the cerebral perfusion and the pathophysiology of brain disorders. Magnetic resonance imaging (MRI), a widely used clinical imaging technique, which is very sensitive to magnetic susceptibility, has the possibility of substituting positron emission tomography (PET) in measuring oxygen metabolism. This review mainly focuses on the quantitative blood oxygenation level-dependent (qBOLD) method for the evaluation of oxygen extraction fraction (OEF) in the brain. Here, we review the theoretic basis of qBOLD, as well as existing acquisition and quantification methods. Some published clinical studies are also presented, and the pros and cons of qBOLD method are discussed as well.

2.
Quant Imaging Med Surg ; 12(11): 5171-5183, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36330178

ABSTRACT

Background: Accurate grading of gliomas is a challenge in imaging diagnosis. This study aimed to evaluate the performance of a machine learning (ML) approach based on multiparametric diffusion-weighted imaging (DWI) in differentiating low- and high-grade adult gliomas. Methods: A model was developed from an initial cohort containing 74 patients with pathology-confirmed gliomas, who underwent 3 tesla (3T) diffusion magnetic resonance imaging (MRI) with 21 b values. In all, 112 histogram features were extracted from 16 parameters derived from seven diffusion models [monoexponential, intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), fractional order calculus (FROC), continuous-time random walk (CTRW), stretched-exponential, and statistical]. Feature selection and model training were performed using five randomly permuted five-fold cross-validations. An internal test set (15 cases of the primary dataset) and an external cohort (n=55) imaged on a different scanner were used to validate the model. The diagnostic performance of the model was compared with that of a single DWI model and DWI radiomics using accuracy, sensitivity, specificity, and the area under the curve (AUC). Results: Seven significant multiparametric DWI features (two from the stretched-exponential and FROC models, and three from the CTRW model) were selected to construct the model. The multiparametric DWI model achieved the highest AUC (0.84, versus 0.71 for the single DWI model, P<0.05), an accuracy of 0.80 in the internal test, and both AUC and accuracy of 0.76 in the external test. Conclusions: Our multiparametric DWI model differentiated low- (LGG) from high-grade glioma (HGG) with better generalization performance than the established single DWI model. This result suggests that the application of an ML approach with multiple DWI models is feasible for the preoperative grading of gliomas.

3.
Front Hum Neurosci ; 15: 616132, 2021.
Article in English | MEDLINE | ID: mdl-33790750

ABSTRACT

Neurite orientation dispersion and density imaging (NODDI) is a diffusion model specifically designed for brain magnetic resonance imaging. Despite recent studies suggesting that NODDI modeling might be more sensitive to brain development than diffusion tensor imaging (DTI), these studies were limited to a relatively small age range and mainly based on the manually operated region of interest analysis. Therefore, this study applied NODDI to investigate brain development in a large sample size of 214 subjects ranging in ages from 0 to 14. The whole brain was automatically segmented into 122 regions. The maturation trajectory of each region was characterized by the time course of diffusion metrics and further quantified using nonlinear regression. The NODDI-derived metrics, neurite density index (NDI) and orientation dispersion index (ODI), increased with age. And these two metrics were superior to the DTI-derived metrics in SVM regression models of age. The NDI in white matter exhibited a more rapid growth than that in gray matter (including the cortex and deep nucleus). These diffusion indicators experienced conspicuous increases during early childhood and the growth speed slowed down in adolescence. Region-specific maturation patterns were described throughout the brain, including white matter, cortical and deep gray matter. These development patterns were evaluated and discussed on the basis of NODDI's model assumptions. To summarize, this study verified the high sensitivity of NODDI to age over a crucial developmental period from newborn to adolescence. Moreover, the existing knowledge of brain development has been complemented, suggesting that NODDI has a potential capability in the investigation of brain development.

4.
Phys Med Biol ; 66(8)2021 04 16.
Article in English | MEDLINE | ID: mdl-33780910

ABSTRACT

Background and objective.Early detection of hepatocellular carcinoma (HCC) is crucial for clinical management. Current studies have reported large HCC detections using automatic algorithms, but there is a lack of research on automatic detection of small HCCs (sHCCs). This study is to investigate the feasibility of automatic detection of sHCC (≤2 cm) based on pattern matching and deep learning (PM-DL) model.Materials and methods. A retrospective study included 5376 image sets from 56 cirrhosis patients (28 sHCC patients with 32 pathologically confirmed lesions and 28 non-HCC cirrhosis patients) in the training-validation cohort to build and validate the model through five-fold cross-validation. In addition, an external test cohort including 6144 image sets from 64 cirrhosis patients (32 sHCC patients with 38 lesions and 32 non-HCC cirrhosis patients) was applied to further verify the generalization ability of the model. The proposed PM-DL model consisted of three main steps: 3D co-registration and liver segmentation, screening of suspicious lesions on diffusion-weighted imaging images based on pattern matching algorithm, and identification/segmentation of sHCC lesions on dynamic contrast-enhanced images with convolutional neural network.Results.The PM-DL model achieved a sensitivity of 89.74% and a positive predictive value of 85.00% in the external test cohort for per-lesion analysis. No significant difference was observed in volumes (P= 0.13) and the largest sizes (P= 0.89) between manually delineated and segmented lesions. The DICE coefficient reached 0.77 ± 0.16. Similar performances were identified in the validation cohort. Moreover, the PM-DL model outperformed Liver Imaging Reporting and Data System (LI-RADS) in sensitivity (probable HCCs: LR-5 or LR-4,P= 0.18; definite HCCs: LR-5,P< 0.001), with a similar high specificity for per-patient analysis.Conclusion. The PM-DL model may be feasible for accurate automatic detection of sHCC in cirrhotic liver.


Subject(s)
Carcinoma, Hepatocellular , Deep Learning , Liver Neoplasms , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/etiology , Contrast Media , Feasibility Studies , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/etiology , Magnetic Resonance Imaging , Retrospective Studies
5.
Magn Reson Imaging ; 75: 141-148, 2021 01.
Article in English | MEDLINE | ID: mdl-33129937

ABSTRACT

PURPOSE: To compare the correlations among the R1ρ, R2, and R2* relaxation rates with liver iron concentration (LIC) in the assessment of rat liver iron content and explore the application potential of R1ρ in assessing liver iron content. METHODS: Iron dextran (dosage of 0, 25, 50, 100, and 200 mg/kg body weight) was injected into 35 male rats to increase the amount of iron storage in the liver. After one week, all rats were euthanized with isoflurane. A portion of the largest hepatic lobe was extracted to quantify the LIC by inductively coupled plasma, and the remaining liver tissue was stored in 4% buffered paraformaldehyde for 24 h before MRI. Spin-lock preparation with a RARE (rapid acquisition with relaxation enhancement) readout (9 different spin-lock times and 7 different spin-lock frequencies (FSLs)) and multi-echo UTE (ultrashort TE) pulses were developed to quantify R1ρ and R2 * on a Bruker 11.7 T MR system. For comparisons with R1ρ and R2*, R2 was acquired using the CPMG sequence. RESULTS: Mean R1ρ values displayed dispersion, with decrease in R1ρ at higher FSLs. Spearman's correlation analysis (two-tailed) indicated that the R1ρ values were significantly associated with LIC at FSL = 2000, 2500, and 3000 Hz (r = 0.365 and P = 0.031, r = 0.608 and P < 0.001, and r = 0.764 and P < 0.001, respectively), and were not significantly associated with LIC at FSL = 500, 1000, 1250, and 1500 Hz (all P > 0.05). R2 and R2* showed significant linear correlations with LIC (r = 0.787 and P < 0.001, and r = 0.859 and P < 0.001, respectively). Correlation analysis across R1ρ, R2, and R* also suggested that the correlation strength between R1ρ and R2 and between R1ρ and R* showed an increasing trend with increase in FSL. CONCLUSION: In this study, a strong association was observed between R1ρ and LIC at high FSLs further confirming previous findings. The results demonstrated that R1ρ at high FSL might serve as a complementary imaging biomarker for liver iron overload quantification.


Subject(s)
Iron/metabolism , Liver/diagnostic imaging , Liver/metabolism , Magnetic Resonance Imaging , Animals , Biomarkers/metabolism , Diagnostic Tests, Routine , Male , Rats
6.
Methods ; 192: 93-102, 2021 08.
Article in English | MEDLINE | ID: mdl-32791337

ABSTRACT

Internet gaming addiction (IGD) is a common disease in teenagers which usually reflects the abnormalities in brain function or structure. Several computational models have been applied to investigate the characteristic of IGD brain networks, for instance, the conception of brain controllability. The primary objective of this study was to explore the relationship between brain controllability and IGD related clinical behaviour. A sample of 101 subjects, including 49 IGD patients and 52 normal controls, were recruited to undergo MR T1 and DTI scanning. Specifically, the MR images were used to generate the white matter connectivity matrix and the morphometry similarity network. The morphometry similarity network was then divided into several communities using modular decomposition. After, average controllability, modal controllability and synchronizability were calculated through measuring the adjacency matrix. The results indicated that the IGD group had greater synchronizability and modal controllability compared to that of the control group, and different morphological-based brain communities had different controllability properties. Furthermore, the addiction demonstrated the mediating effects between nodal or modular brain controllability as well as anxiety. In conclusion, brain controllability could be a potential biomarker of IGD.


Subject(s)
Behavior, Addictive , Video Games , Humans , Brain/diagnostic imaging , Brain Mapping , Internet , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...