Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Texture Stud ; 54(4): 582-594, 2023 08.
Article in English | MEDLINE | ID: mdl-37400374

ABSTRACT

The aim of this study was to compare the investigations of various contents of egg white protein (2.0%-8.0%, EWP), microbial transglutaminase (0.1%-0.4%, MTGase), and konjac glucomannan (0.5%-2.0%, KGM) on the gelling properties and rheological behavior of Trachypenaeus Curvirostris shrimp surimi gel (SSG), and assessed the modification mechanisms through the analysis of structure characteristics. The findings suggested that all modified SSG samples (expect SSG-KGM2.0% ) had the higher gelling properties and the denser network structure than those of unmodified SSG. Meanwhile, EWP could give SSG a better appearance than MTGase and KGM. Rheological results showed that SSG-EWP6% and SSG-KGM1.0% had the highest G' and G″, demonstrating that the formation of higher levels of elasticity and hardness. All modifications could increase gelation rates of SSG along with the reduction of G″ during the degeneration of protein. According to the FTIR results, three modification methods changed SSG protein conformation with the increasing α-helix and ß-sheet contents and the decreasing of random coil content. LF-NMR results indicated that more free water could be transformed into immobilized water in the modified SSG gels, which contributed to improve the gelling properties. Furthermore, molecular forces showed that EWP and KGM could further increase the hydrogen bonds and hydrophobic interaction in SSG gels, while MTGase could induce the formation of more disulfide bonds. Thus, compared with another two modifications, EWP modified SSG gels showed the highest gelling properties.


Subject(s)
Water , Elasticity , Hydrophobic and Hydrophilic Interactions , Hardness , Gels/chemistry , Water/analysis
2.
Food Chem ; 408: 135202, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36525728

ABSTRACT

Frozen storage technology has been widely used for the preservation of Aquatic products. However, ice crystals formation, lipid oxidation and protein denaturation still easily causes aquatic products deterioration. Cryoprotectants are a series of food additives that could efficiently prolong the shelf life and guarantee the acceptability of frozen aquatic products. This review comprehensively illustrated the mechanism of protein denaturation caused by the ice crystal formation and lipid oxidation. The cryoprotective mechanism of various kinds of antifreeze agents (saccharides, phosphates, antifreeze proteins and peptides) and these cryoprotective structure-activity relationship, application efficiency on the quality of aquatic products were also discussed. Moreover, the advantages and disadvantages of each cryoprotectant are also prospected. Compared with others, antifreeze peptides show higher commercial and application values. While, lots of scientific research works are still required to develop novel antifreeze agent as a versatile ingredient with commercial value, applicable in the aquatic products preservation industry.


Subject(s)
Cryoprotective Agents , Ice , Cryoprotective Agents/chemistry , Freezing , Food Additives , Lipids , Antifreeze Proteins/chemistry
3.
Food Chem ; 373(Pt B): 131530, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34774379

ABSTRACT

To investigate the effect of acetylated distarch adipate (ADA) on the physicochemical properties and structure of shrimp myofibrillar protein (MP), the changes in chemical bonds, secondary structure and protein composition of shrimp MP and MP gel (MPG) were analyzed. Besides, the microstructure, water state, texture properties and water holding capacity (WHC) of MPG with different ADA additions were compared. The results showed that the shrimp MPG with 1% ADA addition had the highest breaking force and gel strength, WHC, and the densest three-dimensional network structure. The ADA had little significant effect on the secondary structure of MP and MPG. In addition, hydrogen and ionic bonds were the main chemical bonds of MP, while MPG is mainly dominated by hydrophobic and disulfide bonds. The correlation analysis of gel properties and water state of MPG showed that bound water and immobilized water had a positive effect on the gel strength.


Subject(s)
Penaeidae , Adipates , Animals , Gels , Hydrophobic and Hydrophilic Interactions , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...