Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Microbiome ; 5(1): 64, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104116

ABSTRACT

BACKGROUND: The gastrointestinal microbiome and metabolome vary greatly throughout the different segments of the gastrointestinal tract, however current knowledge of gastrointestinal microbiome and metabolome in health and disease is limited to fecal samples due to ease of sampling. The engineered Small Intestinal MicroBiome Aspiration (SIMBA™) capsule allows specific sampling of the small intestine in humans. We aimed to determine whether administration of SIMBA™ capsules to healthy beagle dogs could reliably and safely sample the small intestinal microbiome and metabolome when compared to their fecal microbiome and metabolome. RESULTS: Eleven beagle dogs were used for the study. Median transit time of capsules was 29.93 h (range: 23.83-77.88). Alpha diversity, as measured by the Simpson diversity, was significantly different (P = 0.048). Shannon diversity was not different (P = 0.114). Beta diversity results showed a significant difference between capsule and fecal samples regarding Bray-Curtis, weighted and unweighted unifrac (P = 0.002) and ANOSIM distance metric s (R = 0.59, P = 0.002). In addition to observing a statistically significant difference in the microbial composition of capsules and feces, distinct variation in the metabolite profiles was seen between the sample types. Heat map analysis showed 16 compounds that were significantly different between the 2 sampling modes (adj-P value ranged between 0.004 and 0.036) with 10 metabolites more abundant in the capsule than in the feces and 6 metabolites more abundant in the feces compared to the capsules. CONCLUSIONS: The engineered Small Intestinal MicroBiome Aspiration (SIMBA™) capsule was easy and safe to administer to dogs. Microbiome and metabolome analysis from the capsule samples were significantly different than that of the fecal samples and were like previously published small intestinal microbiome and metabolome composition.

2.
J Virol ; 97(11): e0082923, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37882520

ABSTRACT

IMPORTANCE: Several coronaviruses (CoVs) have been detected in domesticated, farmed, and wild meso-carnivores, causing a wide range of diseases and infecting diverse species, highlighting their important but understudied role in the epidemiology of these viruses. Assessing the viral diversity hosted in wildlife species is essential to understand their significance in the cross-species transmission of CoVs. Our focus here was on CoV discovery in meso-carnivores in the Northeast United States as a potential "hotspot" area with high density of humans and urban wildlife. This study identifies novel alphacoronaviruses circulating in multiple free-ranging wild and domestic species in this area and explores their potential epidemiological importance based on regions of the Spike gene, which are relevant for virus-host interactions.


Subject(s)
Alphacoronavirus , Carnivora , Feces , Saliva , Animals , Humans , Alphacoronavirus/classification , Alphacoronavirus/genetics , Alphacoronavirus/isolation & purification , Animals, Domestic/virology , Animals, Wild/virology , Carnivora/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Feces/virology , Host Microbial Interactions , New England/epidemiology , Saliva/virology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Zoonoses/transmission , Viral Zoonoses/virology
3.
bioRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37745528

ABSTRACT

Small to mid-sized carnivores, or meso-carnivores, comprise a group of diverse mammals, many of which can adapt to anthropogenically disturbed environments. Wild meso-carnivores living in urban areas may get exposed to or spread pathogens to other species, including stray/feral domestic animals. Several coronaviruses (CoVs) have been detected in domesticated and farmed meso-carnivores, but knowledge of CoVs circulating in free-ranging wild meso-carnivores remains limited. In this study, we analyzed 321 samples collected between 2016 and 2022 from 9 species of free-ranging wild meso-carnivores and stray/feral domestic cats in the northeastern United States. Using a pan-CoV PCR, we screened tissues, feces, and saliva, nasal, and rectal swabs. We detected CoV RNA in fecal and saliva samples of animals in four species: fisher (Pekania pennanti), bobcat (Lynx rufus), red fox (Vulpes vulpes), and domestic cat (Felis catus). Next-generation sequencing revealed that all these viruses belonged to the Luchacovirus subgenus (Alphacoronavirus genus), previously reported only in rodents and lagomorphs (i.e., rabbits). Genetic comparison of the 3'-end of the genome (~12,000bp) revealed that although the viruses detected group with, and have a genetic organization similar to other luchacoviruses, they are genetically distinct from those from rodents and lagomorphs. Genetic characterization of the spike protein revealed that the meso-carnivore luchacoviruses do not have an S1/S2 cleavage motif but do have highly variable structural loops containing cleavage motifs similar to those identified in certain pathogenic CoVs. This study highlights the importance of characterizing the spike protein of CoVs in wild species for further targeted epidemiologic monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...