Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.591
Filter
1.
Neural Regen Res ; 20(1): 277-290, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767492

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.

2.
Carbohydr Polym ; 339: 122261, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823925

ABSTRACT

Understanding the distribution and accessibility of polymers within plant cell walls is crucial for addressing biomass recalcitrance in lignocellulosic materials. In this work, Imaging Fourier Transform Infrared (FTIR) and Raman spectroscopy, coupled with targeted chemical treatments, were employed to investigate cell wall polymer distribution in two bamboo species at both tissue and cell wall levels. Tissue-level Imaging FTIR revealed significant disparities in the distribution and chemical activity of cell wall polymers between the fibrous sheath and fibrous strand. At the cell wall level, Imaging Raman spectroscopy delineated a distinct difference between the secondary wall and intercellular layer, with the latter containing higher levels of lignin, hydroxycinnamic acid (HCA), and xylan, and lower cellulose. Mild acidified sodium chlorite treatment led to partial removal of lignin, HCA, and xylan from the intercellular layer, albeit to a lesser extent than alkaline treatment, indicating susceptibility of these polymers to chemical treatment. In contrast, lignin in the secondary wall exhibited limited reactivity to acidified sodium chlorite but was slightly removed by alkaline treatment, suggesting stable chemical properties with slight alkaline intolerance. These findings provide valuable insights into the inherent design mechanism of plant cells and their efficient utilization.


Subject(s)
Cell Wall , Cellulose , Coumaric Acids , Lignin , Cell Wall/chemistry , Lignin/chemistry , Coumaric Acids/chemistry , Cellulose/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Xylans/chemistry , Spectrum Analysis, Raman/methods , Sasa/chemistry , Chlorides/chemistry , Polymers/chemistry
3.
Physiol Rep ; 12(11): e16057, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825580

ABSTRACT

The bronchoalveolar organoid (BAO) model is increasingly acknowledged as an ex-vivo platform that accurately emulates the structural and functional attributes of proximal airway tissue. The transition from bronchoalveolar progenitor cells to alveolar organoids is a common event during the generation of BAOs. However, there is a pressing need for comprehensive analysis to elucidate the molecular distinctions characterizing the pre-differentiated and post-differentiated states within BAO models. This study established a murine BAO model and subsequently triggered its differentiation. Thereafter, a suite of multidimensional analytical procedures was employed, including the morphological recognition and examination of organoids utilizing an established artificial intelligence (AI) image tracking system, quantification of cellular composition, proteomic profiling and immunoblots of selected proteins. Our investigation yielded a detailed evaluation of the morphologic, cellular, and molecular variances demarcating the pre- and post-differentiation phases of the BAO model. We also identified of a potential molecular signature reflective of the observed morphological transformations. The integration of cutting-edge AI-driven image analysis with traditional cellular and molecular investigative methods has illuminated key features of this nascent model.


Subject(s)
Cell Differentiation , Organoids , Organoids/metabolism , Organoids/cytology , Animals , Mice , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , Artificial Intelligence , Proteomics/methods , Mice, Inbred C57BL
4.
Adv Mater ; : e2405458, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839062

ABSTRACT

Manganese (Mn)-based Prussian blue analogs (PBAs) are of great interest as a prospective cathode material for sodium-ion batteries (SIBs) due to their high redox potential, easy synthesis, and low cost. However, the Jahn-Teller effect and low electrical conductivity of Mn-based PBA cause poor structure stability and unsatisfactory performance during the cycling. Herein, a novel nickel- and copper-codoped K2Mn[Fe(CN)6] cathode is developed via a simple coprecipitation strategy. The doping elements improve the electrical conductivity of Mn-based PBA by reducing the bandgap, as well as suppress the Jahn-Teller effect by stabilizing the framework, as verified by the density functional theory calculations. Simultaneously, the substitution of sodium with potassium in the lattice is beneficial for filling vacancies in the PBA framework, leading to higher average operating voltages and superior structural stability. As a result, the as-prepared Mn-based cathode exhibits excellent reversible capacity (116.0 mAh g-1 at 0.01 A g-1) and superior cycling stability (81.8% capacity retention over 500 cycles at 0.1 A g-1). This work provides a profitable doping strategy to inhibit the Jahn-Teller structural deformation for designing stable cathode material of SIBs.

5.
Phytochemistry ; : 114186, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878944

ABSTRACT

The ethanol extract of the whole plant of Delphinium trichophorum Franch was subjected to a phytochemical study, leading to the isolation of ten unprecedented diterpenoid alkaloids, including nine delnudine-type C20-diterpenoid alkaloids named trichophodines A-I and one kusnezoline-type C20-diterpenoid alkaloid named trichophozine A. Additionally, seven known compounds were also identified. Their structures were elucidated on the basis of extensive spectroscopic analysis, including HSQC, HMBC, 1H-1H COSY, NOESY and X-ray crystallographic analysis. Most isolated compounds were screened for inhibitory activities against LPS-induced NO production in RAW 264.7 macrophage cells and acetylcholinesterase inhibitory effects. Guan-fu base V exhibited potent inhibitory activity against acetylcholinesterase, demonstrating an inhibitory rate of 53.81% at a concentration of 40 µM.

6.
Neuroscience ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38843985

ABSTRACT

APOE ε4 is risk for cognitive decline even in normal aging, but its effect on the whole-brain functional connectivity (FC) among time in young adults remain elusive. This study aimed to validate the time-by-APOE ε4 interaction on brain FC of this specific population. Longitudinal changes in neuropsychological assessments and resting-state functional magnetic resonance imaging in 26 ε4 carriers and 26 matched non-ε4 carriers were measured for about 3 years. Whole-brain FC was calculated, and a full factorial design was used to compare the difference among groups. Two-sample t test was used for post-hoc analysis. Pearson's correlation analysis was conducted to investigate the relationships between FC and cognitive tests. Of 26 specially appointed ROIs, left superior temporal gyrus (TG) was most sensitive to the effect of time-by-gene interaction. Specifically, the alteration of FC was distributed between the left TG and right TG with GRF correction (voxel-P < 0.001, cluster-P < 0.05), and decreased in ε4 carriers while increased in non-ε4. The main effect of gene showed ε4 carriers has lower FC between left TG and right middle frontal gyrus as compared with non-ε4 both at baseline and follow-up study; ε4 carriers has lower FC between left TG and right supramarginal as compared with non-ε4 at baseline, but no difference in follow-up study. The time-by-APOE ε4 interaction on brain FC was demonstrated at a young age, and left TG was the earliest affected brain regions. The young adult ε4 carriers experience decreased FC among time in the absence overt clinical symptoms.

7.
ACS Infect Dis ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873897

ABSTRACT

Nonenveloped viruses employ unique entry mechanisms to breach and infect host cells. Understanding these mechanisms is crucial for developing antiviral strategies. Prevailing perspective suggests that nonenveloped viruses release membrane pore-forming peptides to breach host membranes. However, the precise involvement of the viral capsid in this entry remains elusive. Our study presents direct observations elucidating the dynamically distinctive steps through which metastable reovirus capsids disrupt host lipid membranes as they uncoat into partially hydrophobic intermediate particles. Using both live cells and model membrane systems, our key finding is that reovirus capsids actively deform and permeabilize lipid membranes in a cholesterol-dependent process. Unlike membrane pore-forming peptides, these metastable viral capsids induce more extensive membrane perturbations, including budding, bridging between adjacent membranes, and complete rupture. Notably, cholesterol enhances subviral particle adsorption, resulting in the formation of pores equivalent to the capsid size. This cholesterol dependence is attributed to the lipid condensing effect, particularly prominent at an intermediate cholesterol level. Furthermore, our results reveal a positive correlation between membrane disruption extent and efficiency of viral variants in establishing infection. This study unveils the crucial role of capsid-lipid interaction in nonenveloped virus entry, providing new insights into how cholesterol homeostasis influences virus infection dynamics.

8.
Article in English | MEDLINE | ID: mdl-38874450

ABSTRACT

Chronic hyperglycemia can result in damage to the hippocampus and dysfunction of the blood-brain barrier (BBB), potentially leading to neurological disorders. This study examined the histological structure of the hippocampus and the expression of critical genes associated with the BBB at 2 early stage time points in a streptozotocin-induced diabetes mellitus (DM) mouse model. Routine histology revealed vascular congestion and dilation of Virchow-Robin spaces in the hippocampal CA1 region of the DM group. Neuronal alterations included rounding and swelling and reduction in Nissl bodies and increased apoptosis. Compared to the control group, TJP1 mRNA expression in the DM group was significantly lower (P < .05 or P < .01), while mRNA levels of JAM3, TJP3, CLDN5, CLDN3, and OCLN initially increased and then decreased. At 7, 14, and 21 days, mRNA levels of the receptor for advanced glycation end products (AGER) were greater in the DM group than in the control group (P < .05 or P < .01). These findings indicate that early-stage diabetes may cause structural and functional impairments in hippocampal CA1 in mice. These abnormalities may parallel alterations in the expression of key BBB tight junction molecules and elevated AGER expression in early DM patients.

9.
Signal Transduct Target Ther ; 9(1): 158, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862461

ABSTRACT

Cell membrane-camouflaged nanoparticles possess inherent advantages derived from their membrane structure and surface antigens, including prolonged circulation in the bloodstream, specific cell recognition and targeting capabilities, and potential for immunotherapy. Herein, we introduce a cell membrane biomimetic nanodrug platform termed MPB-3BP@CM NPs. Comprising microporous Prussian blue nanoparticles (MPB NPs) serving as both a photothermal sensitizer and carrier for 3-bromopyruvate (3BP), these nanoparticles are cloaked in a genetically programmable cell membrane displaying variants of signal regulatory protein α (SIRPα) with enhanced affinity to CD47. As a result, MPB-3BP@CM NPs inherit the characteristics of the original cell membrane, exhibiting an extended circulation time in the bloodstream and effectively targeting CD47 on the cytomembrane of colorectal cancer (CRC) cells. Notably, blocking CD47 with MPB-3BP@CM NPs enhances the phagocytosis of CRC cells by macrophages. Additionally, 3BP, an inhibitor of hexokinase II (HK2), suppresses glycolysis, leading to a reduction in adenosine triphosphate (ATP) levels and lactate production. Besides, it promotes the polarization of tumor-associated macrophages (TAMs) towards an anti-tumor M1 phenotype. Furthermore, integration with MPB NPs-mediated photothermal therapy (PTT) enhances the therapeutic efficacy against tumors. These advantages make MPB-3BP@CM NPs an attractive platform for the future development of innovative therapeutic approaches for CRC. Concurrently, it introduces a universal approach for engineering disease-tailored cell membranes for tumor therapy.


Subject(s)
CD47 Antigen , Cell Membrane , Colorectal Neoplasms , Nanoparticles , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Nanoparticles/chemistry , Humans , CD47 Antigen/genetics , Mice , Cell Membrane/metabolism , Cell Membrane/genetics , Animals , Pyruvates/chemistry , Pyruvates/pharmacology , Hexokinase/genetics , Cell Line, Tumor , Macrophages/metabolism , Macrophages/drug effects , Ferrocyanides
10.
World J Gastroenterol ; 30(20): 2638-2656, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855150

ABSTRACT

As a highly invasive carcinoma, esophageal cancer (EC) was the eighth most prevalent malignancy and the sixth leading cause of cancer-related death worldwide in 2020. Esophageal squamous cell carcinoma (ESCC) is the major histological subtype of EC, and its incidence and mortality rates are decreasing globally. Due to the lack of specific early symptoms, ESCC patients are usually diagnosed with advanced-stage disease with a poor prognosis, and the incidence and mortality rates are still high in many countries, especially in China. Therefore, enormous challenges still exist in the management of ESCC, and novel strategies are urgently needed to further decrease the incidence and mortality rates of ESCC. Although the key molecular mechanisms underlying ESCC pathogenesis have not been fully elucidated, certain promising biomarkers are being investigated to facilitate clinical decision-making. With the advent and advancement of high-throughput technologies, such as genomics, proteomics and metabolomics, valuable biomarkers with high sensitivity, specificity and stability could be identified for ESCC. Herein, we aimed to determine the epidemiological features of ESCC in different regions of the world, especially in China, and focused on novel molecular biomarkers associated with ESCC screening, early diagnosis and prognosis prediction.


Subject(s)
Biomarkers, Tumor , Early Detection of Cancer , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/epidemiology , Esophageal Squamous Cell Carcinoma/diagnosis , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Prognosis , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Early Detection of Cancer/methods , China/epidemiology , Incidence , Risk Factors
11.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119769, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838859

ABSTRACT

OBJECTIVE: Intervertebral disc degeneration (IVDD) is the leading cause of lower back pain (LBP). ß-arrestin 1 (ARRB1) is a multifunctional protein that regulates numerous pathological processes. The aim of this study was to investigate the role of ARRB1 in IVDD. METHODS: The expression of ARRB1 in nucleus pulposus (NP) of rats with IVDD was assayed. Next, rat nucleus pulposus cells (NPCs) were infected with lentiviruses containing shArrb1 (LV-shArrb1) and overexpressing Arrb1 (LV-oeArrb1). The roles of Arrb1 in serum-deprived NPCs were investigated by measuring apoptosis, extracellular matrix degradation, and autophagic flux. For experiments in vivo, LV-oeArrb1 lentivirus was injected into the NP tissues of IVDD rats to evaluate the effects of Arrb1 overexpression on NP. RESULTS: In the NP tissues of IVDD rats, ARRB1 and cleaved caspase-3 expression increased, and the ratio of LC3II/LC3I protein expression was upregulated. Arrb1 knockdown aggravated extracellular matrix degradation, cellular apoptosis, and impairment of autophagic flux in rat NPCs under serum-deprived conditions, whereas Arrb1 overexpression significantly reversed these effects. ARRB1 interacted with Beclin 1, and Arrb1 knockdown suppressed the formation of the Beclin1-PIK3C3 core complex. The autophagy inhibitor 3-methyladenine (3-MA) offset the protective effects of Arrb1 overexpression in serum-deprived NPCs. Furthermore, Arrb1 overexpression inhibited apoptosis and extracellular matrix degradation, promoted autophagy in NP, and delayed the development of IVDD in rats. CONCLUSION: ARRB1 prevents extracellular matrix degradation and apoptosis of NPCs by upregulating autophagy and ameliorating IVDD progression, presenting an innovative strategy for the treatment of IVDD.

12.
Virus Res ; 346: 199408, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38797342

ABSTRACT

Noroviruses are a group of non-enveloped single-stranded positive-sense RNA virus belonging to Caliciviridae family. They can be transmitted by the fecal-oral route from contaminated food and water and cause mainly acute gastroenteritis. Outbreaks of norovirus infections could be difficult to detect and investigate. In this study, we developed a simple threshold detection approach based on variations of the P2 domain of the capsid protein. We obtained sequences from the norovirus hypervariable P2 region using Sanger sequencing, including 582 pairs of epidemiologically-related strains from 35 norovirus outbreaks and 6402 pairs of epidemiologically-unrelated strains during the four epidemic seasons. Genetic distances were calculated and a threshold was performed by adopting ROC (Receiver Operating Characteristic) curve which identified transmission clusters in all tested outbreaks with 80 % sensitivity. In average, nucleotide diversity between outbreaks was 67.5 times greater than the diversity within outbreaks. Simple and accurate thresholds for detecting norovirus transmissions of three genotypes obtained here streamlines molecular investigation of norovirus outbreaks, thus enabling rapid and efficient responses for the control of norovirus.

13.
World J Gastroenterol ; 30(16): 2195-2208, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38690024

ABSTRACT

As a highly invasive malignancy, esophageal cancer (EC) is a global health issue, and was the eighth most prevalent cancer and the sixth leading cause of cancer-related death worldwide in 2020. Due to its highly immunogenic nature, emer-ging immunotherapy approaches, such as immune checkpoint blockade, have demonstrated promising efficacy in treating EC; however, certain limitations and challenges still exist. In addition, tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment (TIME); thus, understanding the TIME is urgent and crucial, especially given the im-portance of an immunosuppressive microenvironment in tumor progression. The aim of this review was to better elucidate the mechanisms of the suppressive TIME, including cell infiltration, immune cell subsets, cytokines and signaling pathways in the tumor microenvironment of EC patients, as well as the downregulated expression of major histocompatibility complex molecules in tumor cells, to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies. Therefore, personalized treatments could be developed to maximize the advantages of immunotherapy.


Subject(s)
Esophageal Neoplasms , Immunotherapy , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/therapy , Immunotherapy/methods , Signal Transduction/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Cytokines/metabolism , Cytokines/immunology , Tumor Escape , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism
14.
Orthop Surg ; 16(6): 1461-1472, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714346

ABSTRACT

OBJECTIVES: It is now understood that pedicle screw loosening at the implant-bone interface can lead to poor screw-bone interface purchase and decreased fixation stability. Previous biomechanical tests used cadaveric vertebrae and pull-out or torque loads to assess the effect of the insertional direction of pedicle screws on screw loosening. However, these tests faced challenges in matching biomechanical differences among specimens and simulating in vivo loads applied on pedicle screws. This study aimed to evaluate the effect of the insertional direction of pedicle screws on screw loosening using tension-compression-bending loads and synthetic bone vertebrae. METHODS: Polyaxial pedicle screws were inserted into nine synthetic bone vertebrae in three directions (three samples per group): cranial, parallel, and caudad (-10°, 0°, +10° of the pedicle screw rod to the upper plane of the vertebra, respectively). Pedicle screws in the vertebrae were loaded using a polyethylene block connected to a material testing machine. Tension-compression-bending loads (100N-250N) with 30,000 cycles were applied to the pedicle screws, and displacements were recorded and then cycle-displacement curve was drawn based on cycle number. Micro-CT scans were performed on the vertebrae after removing the pedicle screws to obtain images of the screw hole, and the screw hole volume was measured using imaging analysis software. Direct comparison of displacements was conducted via cycle-displacement curve. Screw hole volume was analyzed using analysis of variance. The correlation between the displacement, screw hole volume and the direction of pedicle screw was assessed by Spearman correlation analysis. RESULTS: The smallest displacements were observed in the caudad group, followed by the parallel and cranial groups. The caudad group had the smallest screw hole volume (p < 0.001 and p = 0.009 compared to the cranial and parallel groups, respectively), while the volume in the parallel group was greater than that in the cranial group (p = 0.003). Correlation analysis revealed that the insertional direction of the pedicle screw was associated with the displacement (p = -0.949, p < 0.001) and screw hole volume (p = -0.944, p < 0.001). CONCLUSION: Strong correlations were found between the insertional direction of the pedicle screw and relevant parameters, including displacement and screw hole volume. Pedicle screw insertion in the caudad direction resulted in the least pedicle screw loosening.


Subject(s)
Pedicle Screws , Biomechanical Phenomena , Humans , Materials Testing , Prosthesis Failure , Spine/surgery , X-Ray Microtomography
15.
ChemSusChem ; : e202301963, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703125

ABSTRACT

The design of photocatalytic supramolecular systems composing of semiconductors and molecular metal complexes for CO2 reduction has attracted increasing attention. The supramolecular system combines the structural merits of semiconductors and metal complexes, where the semiconductor harvests light and undertakes the oxidative site, while the metal complex provides activity for CO2 reduction. The intermolecular charge transfer plays crucial role in ensuring photocatalytic performance. Here, we review the progress of photocatalytic supramolecular systems in reduction of CO2 and highlight the interfacial charge transfer pathways, as well as their state-of-the-art characterization methods. The remaining challenges and prospects for further design of supramolecular photocatalysts are also presented.

16.
ACS Appl Mater Interfaces ; 16(23): 30306-30313, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38819016

ABSTRACT

Beyond traditional paper, multifunctional nanopaper has received much attention in recent years. Currently, many nanomaterials have been successfully used as building units of nanopaper. However, it remains a great challenge to prepare flexible and freestanding metal-organic framework (MOF) nanopaper owing to the low aspect ratio and brittleness of MOF nanocrystals. Herein, this work develops a flexible and free-standing MOF nanopaper with MOF nanowires as building units. The manganese-based MOF (Mn-MOF) nanowires with lengths up to 100 µm are synthesized by a facile solvothermal method. Through a paper-making technique, the Mn-MOF nanowires interweave with each other to form a three-dimensional architecture, thus creating a flexible and free-standing Mn-MOF nanowire paper. Furthermore, the surface properties can be engineered to obtain high hydrophobicity by modifying polydimethylsiloxane (PDMS) on the surfaces of the Mn-MOF nanowire paper. The water contact angle reaches 130°. As a proof of concept, this work presents two potential applications of the Mn-MOF/PDMS nanowire paper: (i) The as-prepared Mn-MOF/PDMS nanowire paper is compatible with a commercial printer. The as-printed colorful patterns are of high quality, and (ii) benefiting from the highly hydrophobic surfaces, the Mn-MOF/PDMS nanowire paper is able to efficiently separate oil from water.

17.
PLoS One ; 19(5): e0303641, 2024.
Article in English | MEDLINE | ID: mdl-38753745

ABSTRACT

OBJECTIVE: The objective of this review is to conduct a comprehensive and systematic assessment of the efficacy of Yoga as an intervention for knee osteoarthritis (KOA). METHODS: We searched PubMed, Cochrane Library, Embase, Web of Science, and PEDro as of January 3, 2024. Retrieved a total of 200 articles. Standardised mean differences (SMDs) and 95% confidence intervals (CI) were calculated. RESULTS: The study included a total of 8 trials and involved 756 KOA patients. The results indicated that compared to the control group, Yoga exercise showed significant improvements in alleviating pain (SMD = -0.92; 95% CI = -1.64 ~ - 0.20; P = 0.01, I2 = 94%), stiffness (SMD = -0.51; 95% CI = -0.91 ~ -0.12; P = 0.01; I2 = 66%) and physical function (SMD = -0.53; 95% CI = -0.89 ~ -0.17; P = 0.004; I2 = 59%) among KOA patients. However, there was no significant improvement observed in terms of activities of activity of daily living (ADL) (SMD = 1.03; 95% CI = -0.01 ~ 2.07; P = 0.05; I2 = 84%), and quality of life (QOL) (SMD = 0.21; 95% CI = -0.33 ~ 0.74; P = 0.44; I2 = 83%) with the practice of Yoga. CONCLUSIONS: In general, Yoga has been found to be effective in reducing pain and stiffness in KOA patients, it can also improve the physical function of patients. However, there is limited evidence to suggest significant improvements in terms of ADL and QOL.


Subject(s)
Osteoarthritis, Knee , Randomized Controlled Trials as Topic , Yoga , Humans , Osteoarthritis, Knee/therapy , Osteoarthritis, Knee/physiopathology , Quality of Life , Activities of Daily Living , Treatment Outcome
18.
ACS Nano ; 18(20): 13333-13345, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717602

ABSTRACT

A persistent inflammatory response, intrinsic limitations in axonal regenerative capacity, and widespread presence of extrinsic axonal inhibitors impede the restoration of motor function after a spinal cord injury (SCI). A versatile treatment platform is urgently needed to address diverse clinical manifestations of SCI. Herein, we present a multifunctional nanoplatform with anisotropic bimodal mesopores for effective neural circuit reconstruction after SCI. The hierarchical nanoplatform features of a Janus structure consist of dual compartments of hydrophilic mesoporous silica (mSiO2) and hydrophobic periodic mesoporous organosilica (PMO), each possessing distinct pore sizes of 12 and 3 nm, respectively. Unlike traditional hierarchical mesoporous nanomaterials with dual-mesopores interlaced with each other, the two sets of mesopores in this Janus nanoplatform are spatially independent and possess completely distinct chemical properties. The Janus mesopores facilitate controllable codelivery of dual drugs with distinct properties: the hydrophilic macromolecular enoxaparin (ENO) and the hydrophobic small molecular paclitaxel (PTX). Anchoring with CeO2, the resulting mSiO2&PMO-CeO2-PTX&ENO nanoformulation not only effectively alleviates ROS-induced neuronal apoptosis but also enhances microtubule stability to promote intrinsic axonal regeneration and facilitates axonal extension by diminishing the inhibitory effect of extracellular chondroitin sulfate proteoglycans. We believe that this functional dual-mesoporous nanoplatform holds significant potential for combination therapy in treating severe multifaceted diseases.


Subject(s)
Spinal Cord Injuries , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , Animals , Porosity , Silicon Dioxide/chemistry , Paclitaxel/pharmacology , Paclitaxel/chemistry , Anisotropy , Nerve Regeneration/drug effects , Hydrophobic and Hydrophilic Interactions , Apoptosis/drug effects , Rats , Nanostructures/chemistry , Mice , Particle Size , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology
19.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2501-2511, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812154

ABSTRACT

This study established a convenient, rapid, and sensitive ultra-performance liquid chromatography tandem mass spectrometry(UPLC-MS/MS) method for simultaneous determination of magnoflorine,(R)-coclaurine, vicenin Ⅱ, isospinosin, spinosin, swertisin, N-nornuciferine, 6-feruloylspinosin, and jujuboside B in beagle dog plasma after oral administration of fried Ziziphi Spinosae Semen(FZSS) extract. The Waters HSS-T3 C_(18) column(2.1 mm×100 mm, 1.8 µm) was used. The methanol-aqueous solution(containing 0.01% formic acid) was adopted as the mobile phase for gradient elution. The nine components and two internal standards were completely separated within 8 min. The mass spectrometry detection was performed in multiple reaction monitoring(MRM) mode by positive and negative ion switching of electrospray ionization. The analytical method was validated in terms of specificity, selectivity, linear range, accuracy, precision, recovery, matrix effect, and stability. It could meet the requirement of pharmacokinetic research after oral administration of FZSS extract to beagle dogs. The results showed that the time to reach the peak concentration(T_(max)) of magnoflorine,(R)-coclaurine, vicenin Ⅱ, isospinosin, spinosin, 6-feruloylspinosin, and jujuboside B was 2.40-3.20 h, and the elimination halflife(t_(1/2)) was 2.08-6.79 h after a single-dose oral administration of FZSS to beagle dogs. The exposure of magnoflorine and spinosin was high, with a peak concentration(C_(max)) of 76.7 and 31.5 ng·mL~(-1) and an area under the curve(AUC_(0-∞)) of 581 and 315 ng·h·mL~(-1), respectively. The exposure of the remaining five compounds was lower, with a C_(max) of 0.81-13.0 ng·mL~(-1) and an AUC_(0-∞) of 6.00-106 ng·h·mL~(-1). This study provides a reference for the follow-up research of FZSS.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Ziziphus , Animals , Dogs , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Ziziphus/chemistry , Male , Liquid Chromatography-Mass Spectrometry
20.
An Sist Sanit Navar ; 47(2)2024 05 31.
Article in English | MEDLINE | ID: mdl-38817086

ABSTRACT

BACKGROUND: This study aimed to assess the effectiveness of high-risk human papillomavirus (HR-HPV) primary testing for cervical cancer screening in China's rural areas. METHODS: Women aged 21-64 years were recruited. Cervical cytology was diagnosed following the Bethesda 2001 classification system, HPV infection (HR-HPV, HPV-16, HPV-18, and other 12 genotypes) identified by Cobas-4800, and colposcopy and biopsy performed when required. Primary outcomes were defined as the cumulative incidence of cervical intraepithelial neoplasia grade 2/3/higher (CIN2/3+) and its relative risk at baseline and at the 36-month follow-up. RESULTS: The study included 9,218 women; mean age was 45.15 years (SD: 8.74); 81% completed the follow-up. The most frequent type of cytological lesions (12.4% ) were ASCUS (8.4%) and LSIL (2.2%). HR-HPV infection (16.3%) was more prevalent in HPV-16 than in HPV-18 (3 vs 1.5%); a positive relationship with the severity of the lesions, from 29.8% in ASCUS to 89.6% in HSIL was found. At baseline, 3.5% of the patients underwent colposcopy; 20% had a positive diagnosis. At the 36-month follow-up, the cumulative incidences of CIN2+ and CIN3+ were higher in women with HR-HPV infection (16.9 vs 0.5% and 8.2 vs 0.2%). The relative risk of CIN2/3+ was lower in HR-HPV-negative women compared to those with a negative cytology at baseline (0.4; 95%CI: 0.3-0.4). CONCLUSIONS: High-risk HPV-based screening may significantly reduce the risk of CIN2/3+ compared with cytology testing. This may be a new resource for public health demands in China's rural areas.


Subject(s)
Early Detection of Cancer , Genotype , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/epidemiology , Adult , Middle Aged , China/epidemiology , Early Detection of Cancer/methods , Papillomavirus Infections/diagnosis , Papillomavirus Infections/virology , Papillomavirus Infections/epidemiology , Young Adult , Uterine Cervical Dysplasia/virology , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Dysplasia/epidemiology , Cohort Studies , Papillomaviridae/genetics , Papillomaviridae/isolation & purification , Rural Health , Colposcopy , Rural Population , Human Papillomavirus Viruses
SELECTION OF CITATIONS
SEARCH DETAIL
...