Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiome ; 11(1): 144, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37370187

ABSTRACT

BACKGROUND: Marine prokaryotes are a rich source of novel bioactive secondary metabolites for drug discovery. Recent genome mining studies have revealed their great potential to bio-synthesize novel secondary metabolites. However, the exact biosynthetic chemical space encoded by the marine prokaryotes has yet to be systematically evaluated. RESULTS: We first investigated the secondary metabolic potential of marine prokaryotes by analyzing the diversity and novelty of the biosynthetic gene clusters (BGCs) in 7541 prokaryotic genomes from cultivated and single cells, along with 26,363 newly assembled medium-to-high-quality genomes from marine environmental samples. To quantitatively evaluate the unexplored biosynthetic chemical space of marine prokaryotes, the clustering thresholds for constructing the biosynthetic gene cluster and molecular networks were optimized to reach a similar level of the chemical similarity between the gene cluster family (GCF)-encoded metabolites and molecular family (MF) scaffolds using the MIBiG database. The global genome mining analysis demonstrated that the predicted 70,011 BGCs were organized into 24,536 mostly new (99.5%) GCFs, while the reported marine prokaryotic natural products were only classified into 778 MFs at the optimized clustering thresholds. The number of MF scaffolds is only 3.2% of the number of GCF-encoded scaffolds, suggesting that at least 96.8% of the secondary metabolic potential in marine prokaryotes is untapped. The unexplored biosynthetic chemical space of marine prokaryotes was illustrated by the 88 potential novel antimicrobial peptides encoded by ribosomally synthesized and post-translationally modified peptide BGCs. Furthermore, a sea-water-derived Aquimarina strain was selected to illustrate the diverse biosynthetic chemical space through untargeted metabolomics and genomics approaches, which identified the potential biosynthetic pathways of a group of novel polyketides and two known compounds (didemnilactone B and macrolactin A 15-ketone). CONCLUSIONS: The present bioinformatics and cheminformatics analyses highlight the promising potential to explore the biosynthetic chemical diversity of marine prokaryotes and provide valuable knowledge for the targeted discovery and biosynthesis of novel marine prokaryotic natural products. Video Abstract.


Subject(s)
Biological Products , Genomics , Phylogeny , Computational Biology , Secondary Metabolism/genetics , Biosynthetic Pathways/genetics
2.
J Nat Prod ; 86(4): 1120-1127, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36912649

ABSTRACT

Kutzneria is a rare genus of Actinobacteria that harbors a variety of secondary metabolite gene clusters and produces several interesting types of bioactive secondary metabolites. Recent efforts have partially elucidated the biosynthetic pathways of some of these bioactive natural products, suggesting the diversity and specificity of secondary metabolism within this genus. Here, we summarized the chemical structures, biosynthetic pathways, and key metabolic enzymes of the secondary metabolites isolated from Kutzneria strains. In-depth comparative genomic analysis of all six available high-quality Kutzneria genomes revealed that the majority (77%) of the biosynthetic gene cluster families of Kutzneria were untapped and identified homologues of key metabolic enzymes in the putative gene clusters, including cytochrome P450s, halogenases, and flavin-dependent N-hydroxylases. The present study suggests that Kutzneria exhibits great potential to synthesize novel secondary metabolites, encodes a variety of valuable metabolic enzymes, and also provides valuable information for the targeted discovery and biosynthesis of novel natural products from Kutzneria.


Subject(s)
Actinobacteria , Actinomycetales , Biological Products , Secondary Metabolism , Actinobacteria/metabolism , Cytochrome P-450 Enzyme System/metabolism , Multigene Family , Biological Products/metabolism , Phylogeny
3.
Environ Microbiol Rep ; 14(6): 917-925, 2022 12.
Article in English | MEDLINE | ID: mdl-35998886

ABSTRACT

Photorhabdus, the symbiotic bacteria of Heterorhabditis nematodes, has been reported to possess many non-ribosomal peptide synthetase (NRPS) biosynthesis gene clusters (BGCs). To provide an in-depth assessment of the non-ribosomal peptide biosynthetic potential of Photorhabdus, we compared the distribution of BGCs in 81 Photorhabdus strains, confirming the predominant presence (44.80%) of NRPS BGCs in Photorhabdus. All 990 NRPS BGCs were clustered into 275 gene cluster families (GCFs) and only 13 GCFs could be annotated with known BGCs, suggesting their great diversity and novelty. These NRPS BGCs encoded 351 novel peptides containing more than four amino acids, and 173 of them showed high sequence similarity to known BGCs encoding bioactive peptides, implying the promising potential of Photorhabdus to produce valuable peptides. Sequence similarity networking of adenylation (A-) domains suggested that the substrate specificity of A-domains was not directly correlated with the sequence similarity. The molecular similarity network of predicted metabolite scaffolds of NRPS BGCs and reported peptides from Photorhabdus and a relevant database demonstrated that the non-ribosomal peptide biosynthetic potential of Photorhabdus was largely untapped and revealed the core peptides deserving intensive studies. Our present study provides valuable information for the targeted discovery of novel non-ribosomal peptides from Photorhabdus.


Subject(s)
Nematoda , Photorhabdus , Animals , Photorhabdus/genetics , Photorhabdus/metabolism , Nematoda/genetics , Multigene Family , Symbiosis , Peptides/genetics
4.
Carbohydr Polym ; 290: 119411, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35550744

ABSTRACT

Low molecular weight seaweed polysaccharides exhibit promising potential as novel therapeutics for the prevention of obesity and gut microbiota dysbiosis. The interplay between polysaccharides and gut microbiota may play crucial roles in their anti-obesity effects, but is largely unknown, including the impact of polysaccharides on the composition of the gut microbiota with polysaccharide-degrading capacity. The primary structure of a 5.1 kDa fucan (J2H) from Saccharina japonica was characterized and oral administration of J2H effectively suppressed high-fat diet-induced obesity, blood glucose metabolic dysfunction, dyslipidemia, and gut microbiota dysbiosis. Furthermore, the Jensen-Shannon divergence analysis demonstrated that J2H enriched at least four gut bacterial species with fucoidan-degrading potential, including Bacteroides sartorii and Bacteroides acidifaciens. Our findings suggest that the low molecular weight S. japonica fucan, J2H, is a promising potential agent for obesity prevention and its enrichment of gut bacteria with fucoidan-degrading potential may play a vital role in the anti-obesity effects.


Subject(s)
Diet, High-Fat , Laminaria , Animals , Bacteria , Diet, High-Fat/adverse effects , Dysbiosis , Mice , Mice, Inbred C57BL , Obesity/metabolism , Polysaccharides/chemistry
5.
J Microbiol ; 59(10): 931-940, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34554454

ABSTRACT

C-Glycosides are an important type of natural product with significant bioactivities, and the C-glycosidic bonds of C-glycosides can be cleaved by several intestinal bacteria, as exemplified by the human faeces-derived puerarin-degrading bacterium Dorea strain PUE. However, glycoside hydrolases in these bacteria, which may be involved in the C-glycosidic bond cleavage of C-glycosides, remain largely unknown. In this study, the genomes of the closest phylogenetic neighbours of five puerarin-degrading intestinal bacteria (including Dorea strain PUE) were retrieved, and the protein-coding genes in the genomes were subjected to sequence similarity network (SSN) analysis. Only four clusters of genes were annotated as glycoside hydrolases and observed in the genome of D. longicatena DSM 13814T (the closest phylogenetic neighbour of Dorea strain PUE); therefore, genes from D. longicatena DSM 13814T belonging to these clusters were selected to overexpress recombinant proteins (CG1, CG2, CG3, and CG4) in Escherichia coli BL21(DE3). In vitro assays indicated that CG4 efficiently cleaved the O-glycosidic bond of daidzin and showed moderate ß-D-glucosidase and ß-D-xylosidase activity. CG2 showed weak activity in hydrolyzing daidzin and pNP-ß-D-fucopyranoside, while CG3 was identified as a highly selective and efficient α-glycosidase. Interestingly, CG3 and CG4 could be selectively inhibited by daidzein, explaining their different performance in kinetic studies. Molecular docking studies predicted the molecular determinants of CG2, CG3, and CG4 in substrate selectivity and inhibition propensity. The present study identified three novel and distinctive glycoside hydrolases, highlighting the potential of SSN in the discovery of novel enzymes from genomic data.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Clostridiales/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Glycosides/metabolism , Bacterial Proteins/genetics , Clostridiales/chemistry , Clostridiales/classification , Clostridiales/genetics , Enzyme Stability , Glycoside Hydrolases/genetics , Glycosides/chemistry , Isoflavones/chemistry , Isoflavones/metabolism , Kinetics , Molecular Docking Simulation , Sequence Analysis, DNA , Substrate Specificity
6.
Environ Microbiol ; 23(11): 6981-6992, 2021 11.
Article in English | MEDLINE | ID: mdl-34490968

ABSTRACT

Bacterial secondary metabolites are rich sources of novel drug leads. The diversity of secondary metabolite biosynthetic gene clusters (BGCs) in genome-sequenced bacteria, which will provide crucial information for the efficient discovery of novel natural products, has not been systematically investigated. Here, the distribution and genetic diversity of BGCs in 10 121 prokaryotic genomes (across 68 phyla) were obtained from their PRISM4 outputs using a custom python script. A total of 18 043 BGCs are detected from 5743 genomes with non-ribosomal peptide synthetases (25.4%) and polyketides (15.9%) as the dominant classes of BGCs. Bacterial strains harbouring the largest number of BGCs are revealed and BGC count in strains of some genera vary greatly, suggesting the necessity of individually evaluating the secondary metabolism potential. Additional analysis against 102 strains of discovered bacterial genera with abundant amounts of BGCs confirms that Kutzneria, Kibdelosporangium, Moorea, Saccharothrix, Cystobacter, Archangium, Actinosynnema, Kitasatospora, and Nocardia, may also be important sources of natural products and worthy of priority investigation. Comparative analysis of BGCs within these genera indicates the great diversity and novelty of the BGCs. This study presents an atlas of bacterial secondary metabolite BGCs that provides a lot of key information for the targeted discovery of novel natural products.


Subject(s)
Biosynthetic Pathways , Cyanobacteria , Multigene Family , Biosynthetic Pathways/genetics , Cyanobacteria/genetics , Secondary Metabolism/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...