Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.121
Filter
1.
Chem Commun (Camb) ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829610

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) possess superb properties originating from their unique chiral structures. However, accurately controlling the structure of SWCNTs remains challenging due to the structural similarities of their chiral structures, which hinders their widespread application in various fields, particularly in electronics. In recent years, much effort has been devoted to preparing single chiral SWCNTs by adopting three constructive strategies, including growth condition control for structurally unstable liquid catalysts, employing stable solid catalyst design, and pre-synthesis of carbon seeds with a well-defined shape. This review comprehensively discusses the state-of-the-art developments in these approaches as well as their advantages and disadvantages. Moreover, insights into the key challenges and future directions are provided for acquiring chirally pure SWCNTs.

2.
J Nanobiotechnology ; 22(1): 308, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825711

ABSTRACT

Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.


Subject(s)
Adjuvants, Immunologic , Cancer Vaccines , Nanotechnology , Neoplasms , mRNA Vaccines , Humans , Cancer Vaccines/immunology , Nanotechnology/methods , Neoplasms/therapy , Neoplasms/immunology , Animals , Drug Delivery Systems/methods , COVID-19/prevention & control , Adjuvants, Vaccine , RNA, Messenger/genetics , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology
4.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731427

ABSTRACT

Dopamine (DA) and uric acid (UA) are essential for many physiological processes in the human body. Abnormal levels of DA and UA can lead to multiple diseases, such as Parkinson's disease and gout. In this work, a three-dimensional reduced graphene oxide-MXene (3D rGO-Ti3C2) composite electrode was prepared using a simple one-step hydrothermal reduction process, which could separate the oxidation potentials of DA and UA, enabling the simultaneous detection of DA and UA. The 3D rGO-Ti3C2 electrode exhibited excellent electrocatalytic activity towards both DA and UA. In 0.01 M PBS solution, the linear range of DA was 0.5-500 µM with a sensitivity of 0.74 µA·µM-1·cm-2 and a detection limit of 0.056 µM (S/N = 3), while the linear range of UA was 0.5-60 µM and 80-450 µM, with sensitivity of 2.96 and 0.81 µA·µM-1·cm-2, respectively, and a detection limit of 0.086 µM (S/N = 3). In 10% fetal bovine serum (FBS) solution, the linear range of DA was 0.5-500 µM with a sensitivity of 0.41 µA·µM-1·cm-2 and a detection limit of 0.091 µM (S/N = 3). The linear range of UA was 2-500 µM with a sensitivity of 0.11 µA·µM-1·cm-2 and a detection limit of 0.6 µM (S/N = 3). The modified electrode exhibited advantages such as high sensitivity, a strong anti-interference capability, and good repeatability. Furthermore, the modified electrode was successfully used for DA measurement in vivo. This could present a simple reliable route for neurotransmitter detection in neuroscience.


Subject(s)
Dopamine , Electrochemical Techniques , Electrodes , Graphite , Uric Acid , Graphite/chemistry , Uric Acid/analysis , Uric Acid/blood , Dopamine/analysis , Dopamine/blood , Electrochemical Techniques/methods , Limit of Detection , Oxidation-Reduction , Humans , Titanium/chemistry , Animals
5.
Adv Mater ; : e2403447, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728424

ABSTRACT

Artificial sensory systems with synergistic touch and pain perception hold substantial promise for environment interaction and human-robot communication. However, the realization of biological skin-like functional integration of sensors with sensitive touch and pain perception still remains a challenge. Here, a concept is proposed of suspended electronic skins enabling 3D deformation-mechanical contact interactions for achieving synergetic ultrasensitive touch and adjustable pain perception. The suspended sensory system can sensitively capture tiny touch stimuli as low as 0.02 Pa and actively perceive pain response with reliable 5200 cycles via 3D deformation and mechanical contact mechanism, respectively. Based on the touch-pain effect, a visualized feedback demo with miniaturized sensor arrays on artificial fingers is rationally designed to give a pain perception mapping on sharp surfaces. Furthermore, the capability is shown of the suspended electronic skin serving as a safe human-robot communication interface from active and passive view through a feedback control system, demonstrating potential in bionic electronics and intelligent robotics.

6.
Eur J Surg Oncol ; 50(7): 108369, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38703632

ABSTRACT

BACKGROUND: TNM staging is the main reference standard for prognostic prediction of colorectal cancer (CRC), but the prognosis heterogeneity of patients with the same stage is still large. This study aimed to classify the tumor microenvironment of patients with stage III CRC and quantify the classified tumor tissues based on deep learning to explore the prognostic value of the developed tumor risk signature (TRS). METHODS: A tissue classification model was developed to identify nine tissues (adipose, background, debris, lymphocytes, mucus, smooth muscle, normal mucosa, stroma, and tumor) in whole-slide images (WSIs) of stage III CRC patients. This model was used to extract tumor tissues from WSIs of 265 stage III CRC patients from The Cancer Genome Atlas and 70 stage III CRC patients from the Sixth Affiliated Hospital of Sun Yat-sen University. We used three different deep learning models for tumor feature extraction and applied a Cox model to establish the TRS. Survival analysis was conducted to explore the prognostic performance of TRS. RESULTS: The tissue classification model achieved 94.4 % accuracy in identifying nine tissue types. The TRS showed a Harrell's concordance index of 0.736, 0.716, and 0.711 in the internal training, internal validation, and external validation sets. Survival analysis showed that TRS had significant predictive ability (hazard ratio: 3.632, p = 0.03) for prognostic prediction. CONCLUSION: The TRS is an independent and significant prognostic factor for PFS of stage III CRC patients and it contributes to risk stratification of patients with different clinical stages.

7.
J Am Soc Mass Spectrom ; 35(6): 1138-1155, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38740383

ABSTRACT

Having fast, accurate, and broad spectrum methods for the identification of microorganisms is of paramount importance to public health, research, and safety. Bottom-up mass spectrometer-based proteomics has emerged as an effective tool for the accurate identification of microorganisms from microbial isolates. However, one major hurdle that limits the deployment of this tool for routine clinical diagnosis, and other areas of research such as culturomics, is the instrument time required for the mass spectrometer to analyze a single sample, which can take ∼1 h per sample, when using mass spectrometers that are presently used in most institutes. To address this issue, in this study, we employed, for the first time, tandem mass tags (TMTs) in multiplex identifications of microorganisms from multiple TMT-labeled samples in one MS/MS experiment. A difficulty encountered when using TMT labeling is the presence of interference in the measured intensities of TMT reporter ions. To correct for interference, we employed in the proposed method a modified version of the expectation maximization (EM) algorithm that redistributes the signal from ion interference back to the correct TMT-labeled samples. We have evaluated the sensitivity and specificity of the proposed method using 94 MS/MS experiments (covering a broad range of protein concentration ratios across TMT-labeled channels and experimental parameters), containing a total of 1931 true positive TMT-labeled channels and 317 true negative TMT-labeled channels. The results of the evaluation show that the proposed method has an identification sensitivity of 93-97% and a specificity of 100% at the species level. Furthermore, as a proof of concept, using an in-house-generated data set composed of some of the most common urinary tract pathogens, we demonstrated that by using the proposed method the mass spectrometer time required per sample, using a 1 h LC-MS/MS run, can be reduced to 10 and 6 min when samples are labeled with TMT-6 and TMT-10, respectively. The proposed method can also be used along with Orbitrap mass spectrometers that have faster MS/MS acquisition rates, like the recently released Orbitrap Astral mass spectrometer, to further reduce the mass spectrometer time required per sample.


Subject(s)
Algorithms , Proteomics , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Proteomics/methods , Humans , Bacteria/isolation & purification , Bacteria/chemistry , Bacterial Proteins/analysis , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification
8.
Article in English | MEDLINE | ID: mdl-38748242

ABSTRACT

PURPOSE: To compare the modified Hardinge approach and trochanteric flip osteotomy for the treatment of Pipkin type IV femoral head fractures. METHODS:  This retrospective study included 40 patients who underwent surgical treatment for Pipkin type IV femoral head fractures between 2011 and 2020 and completed at least 1 year of follow-up. The clinical outcome of the Merle d'Aubigné-Postel score and radiological outcomes, including the quality of the fracture reduction, osteonecrosis of the femoral head, posttraumatic osteoarthritis, and heterotopic ossification, were compared between the two groups. Conversion to total hip replacement was recorded as the main outcome measure, analyzed by Kaplan-Meier curve and log-rank test. RESULTS: Nineteen and 21 patients were treated using the modified Hardinge approach (Group A) and trochanteric flip osteotomy (Group B), respectively. The estimated surgical blood loss was significantly higher in Group B (500.00 ± 315.44 mL vs. 246.32 ± 141.35 mL; P = 0.002). Two patients in Group B complained of discomfort caused by the trochanteric screws and requested implant removal. Radiographic outcomes did not differ significantly between the two groups. Clinical outcomes assessed using the Merle d'Aubigné-Postel score 1 year after injury were nearly identical (P = 0.836). Four (21.1%) patients in Group A and three (14.3%) patients in Group B underwent conversion to total hip replacement during the follow-up period; the log-rank test showed no significant difference (P = 0.796). CONCLUSIONS: The modified Hardinge approach resulted in reduced blood loss, with clinical and radiological outcomes similar to those of trochanteric osteotomy; thus, it is an acceptable alternative to trochanteric flip osteotomy.

9.
Bio Protoc ; 14(9): e4985, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38737508

ABSTRACT

Pseudouridine (Ψ), the most prevalent modified base in cellular RNAs, has been mapped to numerous sites not only in rRNAs, tRNAs, and snRNAs but also mRNAs. Although there have been multiple techniques to identify Ψs, due to the recent development of sequencing technologies some reagents are not compatible with the current sequencer. Here, we show the updated Pseudo-seq, a technique enabling the genome-wide identification of pseudouridylation sites with single-nucleotide precision. We provide a comprehensive description of Pseudo-seq, covering protocols for RNA isolation from human cells, library preparation, and detailed data analysis procedures. The methodology presented is easily adaptable to any cell or tissue type with high-quality mRNA isolation. It can be used for discovering novel pseudouridylation sites, thus constituting a crucial initial step toward understanding the regulation and function of this modification. Key features • Identification of Ψ sites on mRNAs. • Updated Pseudo-seq provides precise positional and quantitative information of Ψ. • Uses a more efficient library preparation with the latest, currently available materials.

12.
Chemistry ; : e202401033, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775406

ABSTRACT

Pentavalent uranium compounds are key components of uranium's redox chemistry and play important roles in environmental transport. Despite this, well-characterized U(V) compounds are scarce primarily because of their instability with respect to disproportionation to U(IV) and U(VI). In this work, we provide an alternate route to incorporation of U(V) into a crystalline lattice where different oxidation states of uranium can be stabilized through the incorporation of secondary cations with different sizes and charges. We show that iriginite-based crystalline layers allow for systematically replacing U(VI) with U(V) through aliovalent substitution of 2+ alkaline-earth or 3+ rare-earth cations as dopant ions under high-temperature conditions, specifically Ca(UVIO2)W4O14 and Ln(UVO2)W4O14 (Ln = Nd, Sm, Eu, Gd, Yb). Evidence for the existence of U(V) and U(VI) is supported by single-crystal X-ray diffraction, high energy resolution X-ray absorption near edge structure, X-ray photoelectron spectroscopy, and optical absorption spectroscopy. In contrast with other reported U(V) materials, the U(V) single crystals obtained using this route are relatively large (several centimeters) and easily reproducible, and thus provide a substantial improvement in the facile synthesis and stabilization of U(V).

13.
Children (Basel) ; 11(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38790600

ABSTRACT

This retrospective study aimed to analyze the treatment effect and prognostic factors of pediatric acute myeloid leukemia (AML) patients with t(8;21). A total of 268 newly diagnosed pediatric AML (pAML) enrolled from 1 January 2005 to 31 December 2022 were retrospectively reviewed, and 50 (18.7%) patients harbored t(8;21) translocation. CR rate, OS, EFS, and RFS were assessed by multivariate Logistic and Cox regression models in these patients. Of the 50 patients, 2 patients abandoned treatment during the first induction course. Of the remaining 48 patients who received double-induction therapy and were included in the final analyses, CR1 and CR2 were 75.0% (36/48) and 95.8% (46/48), respectively. The overall three-year OS, EFS, and RFS were 68.4% (95% CI, 55.0-85.1), 64.2% (95% CI, 50.7-81.4), and 65.5% (95% CI, 51.9-82.8), respectively. The presence of loss of sex chromosome (LOS) at diagnosis (n = 21) was associated with a better 3-year OS [87.5% (95% CI, 72.7-100) vs. 52.7% (95% CI, 35.1-79.3), p = 0.0089], 3-year EFS [81.6% (95% CI, 64.7-100) vs. 49.7% (95% CI, 32.4-76.4), p = 0.023], and 3-year RFS [81.6% (95% CI, 64.7-100) vs. 51.7% (95% CI, 33.9-78.9), p = 0.036] than those without LOS (n = 27), and it was also an independent good prognostic factor of OS (HR, 0.08 [95% CI, 0.01-0.48], p = 0.005), EFS (HR, 0.22 [95% CI, 0.05-0.85], p = 0.029), and RFS (HR, 0.21 [95% CI, 0.05-0.90], p = 0.035). However, extramedullary leukemia (EML) featured the independent risk factors of inferior OS (HR, 10.99 [95% CI, 2.08-58.12], p = 0.005), EFS (HR, 4.75 [95% CI, 1.10-20.61], p = 0.037), and RFS (HR, 6.55 [95% CI, 1.40-30.63], p = 0.017) in pediatric individuals with t(8;21) AML. Further analysis of combining LOS with EML indicated that the EML+LOS- subgroup had significantly inferior OS (92.9%, [95% CI, 80.3-100]), EFS (86.2%, [95% CI, 70.0-100]), and RFS (86.2%, [95% CI, 80.3-100]) compared to the other three subgroups (all p < 0.001). LOS and EML are independent prognostic factors of OS, EFS, and RFS with t(8;21) pAML patients. LOS combined with EML may help improve risk stratification.

14.
Chem Sci ; 15(21): 8156-8162, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817557

ABSTRACT

The first straightforward strategy for the synthesis of 1,4-dicarbonyl Z-alkenes has been developed via an electrochemical cross-coupling reaction of sulfoxonium ylides and alkynes with water. The metal-free protocol showed an easy-to-handle nature, good functional group tolerance, and high Z-stereoselectivity, which is rare in previous cases. The proposed reaction mechanism was convincingly established by carrying out a series of control experiments, cyclic voltammetry experiments, and density functional theory (DFT) studies.

15.
Science ; 384(6699): 1000-1006, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38815024

ABSTRACT

Layered metal-halide perovskites, or two-dimensional perovskites, can be synthesized in solution, and their optical and electronic properties can be tuned by changing their composition. We report a molecular templating method that restricted crystal growth along all crystallographic directions except for [110] and promoted one-dimensional growth. Our approach is widely applicable to synthesize a range of high-quality layered perovskite nanowires with large aspect ratios and tunable organic-inorganic chemical compositions. These nanowires form exceptionally well-defined and flexible cavities that exhibited a wide range of unusual optical properties beyond those of conventional perovskite nanowires. We observed anisotropic emission polarization, low-loss waveguiding (below 3 decibels per millimeter), and efficient low-threshold light amplification (below 20 microjoules per square centimeter).

16.
Org Lett ; 26(21): 4475-4479, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38767291

ABSTRACT

Genome mining of Emericella sp. XL-029 achieved a new type E sesterterpene synthase, EmES, which affored a novel bipolyhydroindenol sesterterpene, emerindanol A. Heterologous coexpression with the upstream P450 oxidase revealed C-4 hydroxylated product, emerindanol B. Notably, emerindanols A and B represented the first sesterterpenes featuring a unique 5/6-6/5 coupled ring system. EmES was postulated to initiate through C1-IV-V pathway and convert the fused ring intermediate into the final coupled ring product through a spiro skeleton.


Subject(s)
Sesterterpenes , Sesterterpenes/chemistry , Molecular Structure , Emericella/chemistry
17.
Int J Biol Macromol ; 271(Pt 2): 132473, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795886

ABSTRACT

Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) serve as transcriptional co-activators that dynamically shuttle between the cytoplasm and nucleus, resulting in either the suppression or enhancement of their downstream gene expression. Recent emerging evidence demonstrates that YAP/TAZ is strongly implicated in the pathophysiological processes that contribute to cardiovascular diseases (CVDs). In the cardiovascular system, YAP/TAZ is involved in the orchestration of a range of biological processes such as oxidative stress, inflammation, proliferation, and autophagy. Furthermore, YAP/TAZ has been revealed to be closely associated with the initiation and development of various cardiovascular diseases, including atherosclerosis, pulmonary hypertension, myocardial fibrosis, cardiac hypertrophy, and cardiomyopathy. In this review, we delve into recent studies surrounding YAP and TAZ, along with delineating their roles in contributing to the pathogenesis of CVDs with a link to various physiological processes in the cardiovascular system. Additionally, we highlight the current potential drugs targeting YAP/TAZ for CVDs therapy and discuss their challenges for translational application. Overall, this review may offer novel insights for understanding and treating cardiovascular disorders.

18.
J Proteome Res ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728051

ABSTRACT

In recent years, several deep learning-based methods have been proposed for predicting peptide fragment intensities. This study aims to provide a comprehensive assessment of six such methods, namely Prosit, DeepMass:Prism, pDeep3, AlphaPeptDeep, Prosit Transformer, and the method proposed by Guan et al. To this end, we evaluated the accuracy of the predicted intensity profiles for close to 1.7 million precursors (including both tryptic and HLA peptides) corresponding to more than 18 million experimental spectra procured from 40 independent submissions to the PRIDE repository that were acquired for different species using a variety of instruments and different dissociation types/energies. Specifically, for each method, distributions of similarity (measured by Pearson's correlation and normalized angle) between the predicted and the corresponding experimental b and y fragment intensities were generated. These distributions were used to ascertain the prediction accuracy and rank the prediction methods for particular types of experimental conditions. The effect of variables like precursor charge, length, and collision energy on the prediction accuracy was also investigated. In addition to prediction accuracy, the methods were evaluated in terms of prediction speed. The systematic assessment of these six methods may help in choosing the right method for MS/MS spectra prediction for particular needs.

19.
Angew Chem Int Ed Engl ; : e202404816, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788189

ABSTRACT

Room-temperature sodium-sulfur (RT Na-S) batteries, noted for their low material costs and high energy density, are emerging as a promising alternative to LIBs in various applications including power grids and standalone renewable energy systems. These batteries are commonly assembled with glass fiber membranes, which face significant challenges like the dissolution of polysulfides, sluggish sulfur conversion kinetics, and the dendrites growth. Here, we develop an amorphous FeSnOx nanosheet with hierarchical vacancies, including abundant oxygen vacancies (Ovs) and nano-sized perforations, that can be assembled into a multifunctional layer overlaying commercial separators for RT Na-S batteries. The Ovs offer strong adsorption and abundant catalytic sites for polysulfides, while the defect concentration is finely tuned to elucidate the polysulfides conversion mechanisms. The nano-sized perforations aid in regulating Na ions transport, resulting in uniform Na deposition. Moreover, the strategic addition of trace amounts of Ti3C2 forms an amorphous/crystalline interface that significantly improves the mechanical properties of the separator and suppresses dendrite growth. As a result, the task-specific layer achieves ultra-light (~0.1mg cm-2), ultra-thin (~200nm), and ultra-robust (modulus = 4.9GPa) characteristics. Consequently, the RT Na-S battery maintained a high capacity of 610.3mAh g-1 and an average Coulombic efficiency of 99.9% after 400 cycles at 0.5C.

20.
Gynecol Endocrinol ; 40(1): 2352142, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38781518

ABSTRACT

In contemporary times, the employment of vitrification freezing technology has led to the widespread adoption of frozen-thawed embryo transfer (FET) worldwide. Meanwhile, hormone replacement therapy (HRT) is a crucial protocol for priming the endometrium during FET cycles. Estrogen is required in HRT cycles for the induction of progesterone receptors and to promote endometrial thickness. However, there is no universal consensus on the treatment duration, dosage regimen, administration route, and target serum estrogen levels. Therefore, this study aimed to offer a comprehensive review of these topics. A shorter duration of estrogen exposure may elevate the risk of early miscarriage, while prolonged exposure to estrogen does not seem to confer advantages to general population and may be attempted in individuals with thin endometrium. Moreover, excessive estrogen levels on the day of progesterone administration may be associated with higher miscarriage rates and lower live birth rates (LBR). To offer more comprehensive guidance for clinical practice, extensive and prospective studies involving a large sample size are warranted to determine the optimal concentration and duration of estrogen exposure.


Subject(s)
Cryopreservation , Embryo Transfer , Estrogens , Pregnancy Outcome , Humans , Female , Pregnancy , Embryo Transfer/methods , Estrogens/administration & dosage , Abortion, Spontaneous/epidemiology , Abortion, Spontaneous/prevention & control , Endometrium/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...