Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.991
Filter
1.
Opt Lett ; 49(11): 3271-3274, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824381

ABSTRACT

Silicon photonic-integrated circuits (PICs) operating in the 2 µm wave band are of great interest for spectroscopic sensing, nonlinear optics, and optical communication applications. However, the performance of silicon PICs in this wave band lags far behind the conventional optical communication band (1310/1550 nm). Here we report the realization of a low-loss waveguide and an ultrahigh-Q microring resonator in the 2 µm wave band on a standard 200 mm silicon photonic platform. The single-mode strip waveguide fabricated on a 220 nm-thick silicon device layer has a record-low propagation loss ∼0.2 dB/cm. Based on the low-loss waveguide, we demonstrate an ultrahigh-Q microring resonator with a measured loaded Q-factor as high as 1.1 × 106 and intrinsic Q-factor of 2 × 106, one order of magnitude higher than prior silicon resonators operating in the same wave band. The extinction ratio of the resonator is higher than 22 dB. These high-performance silicon photonic components pave the way for on-chip sensing applications and nonlinear optics in the 2 µm wave band.

2.
Int Heart J ; 65(3): 427-432, 2024.
Article in English | MEDLINE | ID: mdl-38825491

ABSTRACT

The impact of tolvaptan and low-dose dopamine on heart failure (HF) patients with acute kidney injury (AKI) remains uncertain from a clinical standpoint.HF patients with AKI were selected and divided in a 1:1 fashion into the dopamine combined with the tolvaptan group (DTG), the tolvaptan group (TG), and the control group (CG). According to the standard of care, TG received tolvaptan 15 mg orally daily for a week. DTG received combination treatment, including 7 consecutive days of dopamine infusion (2 µg/kg・minutes) and oral tolvaptan 15 mg. Venous blood and urine samples were taken before and after therapy. The primary endpoint was the cardiorenal serological index after 7 days of treatment.Sixty-five patients were chosen randomly for the DTG (22 patients), TG (20 patients), and CG (23 patients), which were similar before the treatment. The serum indexes related to cardiac function (N-terminal probrain natriuretic peptide and cardiac troponin I) in DTG were decreased, compared with TG and CG (P < 0.05). Furthermore, the serological markers of renal function (serum cystatin C, serum creatinine, and neutrophil gelatinase-associated lipocalin) in DTG were lower than those in TG and CG (P < 0.05). There was no significant difference in the incidence of adverse reactions among groups.Low-dose dopamine combined with tolvaptan can markedly improve patients' cardiac and renal function. This may be considered a new therapeutic method for HF patients with AKI.


Subject(s)
Acute Kidney Injury , Antidiuretic Hormone Receptor Antagonists , Dopamine , Drug Therapy, Combination , Heart Failure , Tolvaptan , Humans , Tolvaptan/administration & dosage , Tolvaptan/therapeutic use , Heart Failure/drug therapy , Heart Failure/complications , Male , Female , Dopamine/administration & dosage , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Aged , Middle Aged , Antidiuretic Hormone Receptor Antagonists/administration & dosage , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Natriuretic Peptide, Brain/blood , Treatment Outcome , Benzazepines/administration & dosage , Peptide Fragments/blood
3.
Small ; : e2402841, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693072

ABSTRACT

Developing lightweight composite with reversible switching between microwave (MW) absorption and electromagnetic interference (EMI) shielding is promising yet remains highly challenging due to the completely inconsistent attenuation mechanism for electromagnetic (EM) radiation. Here, a lightweight vanadium dioxide/expanded polymer microsphere composites foam (VO2/EPM) is designed and fabricated with porous structures and 3D VO2 interconnection, which possesses reversible switching function between MW absorption and EMI shielding under thermal stimulation. The VO2/EPM exhibits MW absorption with a broad effective absorption bandwidth of 3.25 GHz at room temperature (25 °C), while provides EMI shielding of 23.1 dB at moderately high temperature (100 °C). This reversible switching performance relies on the porous structure and tunability of electrical conductivity, complex permittivity, and impedance matching, which are substantially induced by the convertible crystal structure and electronic structure of VO2. Finite element simulation is employed to qualitatively investigate the change in interaction between EM waves and VO2/EPM before and after the phase transition. Moreover, the application of VO2/EPM is demonstrated with a reversible switching function in controlling wireless transmission on/off, showcasing its excellent cycling stability. This kind of smart material with a reversible switching function shows great potential in next-generation electronic devices.

4.
Acad Radiol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704286

ABSTRACT

RATIONALE AND OBJECTIVES: This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). MATERIALS AND METHODS: This retrospective study included 115 cardiomyopathy patients subdivided into ICM (n = 64) and DCM cohorts (n = 51). We collected invasive clinical (IC), noninvasive clinical (NIC), and combined clinical (CC) feature subsets. Radiomic features were extracted from regions of interest (ROIs) in the left ventricle (LV), LV cavity (LVC), and myocardium (MYO). We tested 10 classical machine learning classifiers and validated them through fivefold cross-validation. We compared the efficacy of clinical feature-based models and radiomics-based models to identify the superior diagnostic approach. RESULTS: In the validation set, the Gaussian naive Bayes (GNB) model outperformed the other models in all categories, with areas under the curve (AUCs) of 0.879 for IC_GNB, 0.906 for NIC_GNB, and 0.906 for CC_GNB. Among the radiomics models, the MYO_LASSOCV_MLP model demonstrated the highest AUC (0.919). In the test set, the MYO_RFECV_GNB radiomics model achieved the highest AUC (0.857), surpassing the performance of the three clinical feature models (IC_GNB: 0.732; NIC_GNB: 0.75; CC_GNB: 0.786). CONCLUSION: Radiomics models leveraging MYO images from cine-CMR exhibit promising potential for differentiating ICM from DCM, indicating the significant clinical application scope of such models. CLINICAL RELEVANCE STATEMENT: The integration of radiomics models and machine learning methods utilizing cine-CMR sequences enhances the diagnostic capability to distinguish between ICM and DCM, minimizes examination risks for patients, and potentially reduces the duration of medical imaging procedures.

5.
Discov Nano ; 19(1): 75, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38691247

ABSTRACT

The technology of RGBY micro resonant cavity light emitting diodes (micro-RCLEDs) based on quantum dots (QDs) is considered one of the most promising approaches for full-color displays. In this work, we propose a novel structure combining a high color conversion efficiency (CCE) QD photoresist (QDPR) color conversion layer (CCL) with blue light micro RCLEDs, incorporating an ultra-thin yellow color filter. The additional TiO2 particles inside the QDPR CCL can scatter light and disperse QDs, thus reducing the self-aggregation phenomenon and enhancing the eventual illumination uniformity. Considering the blue light leakage, the influences of adding different color filters are investigated by illumination design software. Finally, the introduction of low-temperature atomic layer deposition (ALD) passivation protection technology at the top of the CCL can enhance the device's reliability. The introduction of RGBY four-color subpixels provides a viable path for developing low-energy consumption, high uniformity, and efficient color conversion displays.

6.
Int J Ophthalmol ; 17(3): 473-479, 2024.
Article in English | MEDLINE | ID: mdl-38721502

ABSTRACT

AIM: To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes. METHODS: Consecutive patients diagnosed with congenital cataracts and undergoing surgery between January 2005 and November 2021 were recruited. Data on visual outcomes and the phenotypic characteristics of ocular biometry and the anterior and posterior segments were extracted from the patients' medical records. A hierarchical cluster analysis was performed. The main outcome measure was the identification of distinct clusters of eyes with congenital cataracts. RESULTS: A total of 164 children (299 eyes) were divided into two clusters based on their ocular features. Cluster 1 (96 eyes) had a shorter axial length (mean±SD, 19.44±1.68 mm), a low prevalence of macular abnormalities (1.04%), and no retinal abnormalities or posterior cataracts. Cluster 2 (203 eyes) had a greater axial length (mean±SD, 20.42±2.10 mm) and a higher prevalence of macular abnormalities (8.37%), retinal abnormalities (98.52%), and posterior cataracts (4.93%). Compared with the eyes in Cluster 2 (57.14%), those in Cluster 1 (71.88%) had a 2.2 times higher chance of good best-corrected visual acuity [<0.7 logMAR; OR (95%CI), 2.20 (1.25-3.81); P=0.006]. CONCLUSION: This retrospective study categorizes congenital cataracts into two distinct clusters, each associated with a different likelihood of visual outcomes. This innovative classification may enable the personalization and prioritization of early interventions for patients who may gain the greatest benefit, thereby making strides toward precision medicine in the field of congenital cataracts.

7.
Angew Chem Int Ed Engl ; : e202401181, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725281

ABSTRACT

Developing novel catalysts with potent activity is of great importance in organocatalysis. In this study, we designed and prepared a new class of benzotetramisole Lewis base catalysts (AxBTM) that have both central and axial chirality. This unique feature of these catalysts results in a three-dimensional microenvironment with multi-layers of chirality. The performance of the developed catalysts was tested in a series of cycloaddition reactions. These included the AxBTM-catalyzed (2 + 2) cycloaddition between α-fluoro-α-aryl anhydride with imines or oxindoles, and the sequential gold/AxBTM-catalyzed (4 + 2) cycloaddition of enynamides with pentafluorophenyl esters. The interplay between axial and central chirality had a collaborative effect in regulating the stereochemistry in these cycloadditions, leading to high levels of stereoselectivity that would otherwise be challenging to achieve using conventional BTM catalysts. However, the (2 + 2) and (4 + 2) cycloadditions have different predilections for axial and central chirality combinations.

8.
FEBS J ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708718

ABSTRACT

Although, superkiller complex protein 8 (SKI8), previously known as WDR61 has been identified and mapped in breast tumor, little is currently known about its function. This study aims to elucidate the role of WDR61 in breast tumor development and its potential as a therapeutic target. Here, we show that tamoxifen-induced knockout of Wdr61 reduces the risk of breast tumors, resulting in smaller tumor size and weight, and improved overall survival. Furthermore, we show that knockdown of WDR61 compromises the proliferation of breast tumor cells with reduced colony-forming capacity. Further investigations demonstrate that the protective effect of WDR61 loss on breast tumor development is due to genomic instability. Mechanistic studies reveal that WDR61 interacts with the R-loop, and loss of WDR61 leads to R-loops accumulation in breast tumor cells, causing DNA damage and subsequent inhibition of cell proliferation. In summary, this study highlights the critical dependence of breast tumors on WDR61, which suppresses R-loop and counteracts endogenous DNA damage in tumor cells.

9.
BMC Genomics ; 25(1): 445, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711039

ABSTRACT

BACKGROUND: Characterization of regulatory variants (e.g., gene expression quantitative trait loci, eQTL; gene splicing QTL, sQTL) is crucial for biologically interpreting molecular mechanisms underlying loci associated with complex traits. However, regulatory variants in dairy cattle, particularly in specific biological contexts (e.g., distinct lactation stages), remain largely unknown. In this study, we explored regulatory variants in whole blood samples collected during early to mid-lactation (22-150 days after calving) of 101 Holstein cows and analyzed them to decipher the regulatory mechanisms underlying complex traits in dairy cattle. RESULTS: We identified 14,303 genes and 227,705 intron clusters expressed in the white blood cells of 101 cattle. The average heritability of gene expression and intron excision ratio explained by cis-SNPs is 0.28 ± 0.13 and 0.25 ± 0.13, respectively. We identified 23,485 SNP-gene expression pairs and 18,166 SNP-intron cluster pairs in dairy cattle during early to mid-lactation. Compared with the 2,380,457 cis-eQTLs reported to be present in blood in the Cattle Genotype-Tissue Expression atlas (CattleGTEx), only 6,114 cis-eQTLs (P < 0.05) were detected in the present study. By conducting colocalization analysis between cis-e/sQTL and the results of genome-wide association studies (GWAS) from four traits, we identified a cis-e/sQTL (rs109421300) of the DGAT1 gene that might be a key marker in early to mid-lactation for milk yield, fat yield, protein yield, and somatic cell score (PP4 > 0.6). Finally, transcriptome-wide association studies (TWAS) revealed certain genes (e.g., FAM83H and TBC1D17) whose expression in white blood cells was significantly (P < 0.05) associated with complex traits. CONCLUSIONS: This study investigated the genetic regulation of gene expression and alternative splicing in dairy cows during early to mid-lactation and provided new insights into the regulatory mechanisms underlying complex traits of economic importance.


Subject(s)
Lactation , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Cattle/genetics , Lactation/genetics , Female , RNA Splicing , Genome-Wide Association Study , Gene Expression Profiling , Introns , Transcriptome
10.
Transl Psychiatry ; 14(1): 205, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769320

ABSTRACT

Growing evidence suggests an association between osteocalcin (OCN), a peptide derived from bone and involved in regulating glucose and lipid metabolism, and the risk of Alzheimer's disease (AD). However, the causality of these associations and the underlying mechanisms remain uncertain. We utilized a Mendelian randomization (MR) approach to investigate the causal effects of blood OCN levels on AD and to assess the potential involvement of glucose and lipid metabolism. Independent instrumental variables strongly associated (P < 5E-08) with blood OCN levels were obtained from three independent genome-wide association studies (GWAS) on the human blood proteome (N = 3301 to 35,892). Two distinct summary statistics datasets on AD from the International Genomics of Alzheimer's Project (IGAP, N = 63,926) and a recent study including familial-proxy AD patients (FPAD, N = 472,868) were used. Summary-level data for fasting glucose (FG), 2h-glucose post-challenge, fasting insulin, HbA1c, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol (TC), and triglycerides were incorporated to evaluate the potential role of glucose and lipid metabolism in mediating the impact of OCN on AD risk. Our findings consistently demonstrate a significantly negative correlation between genetically determined blood OCN levels and the risk of AD (IGAP: odds ratio [OR, 95%CI] = 0.83[0.72-0.96], P = 0.013; FPAD: OR = 0.81 [0.70-0.93], P = 0.002). Similar estimates with the same trend direction were obtained using other statistical approaches. Furthermore, employing multivariable MR analysis, we found that the causal relationship between OCN levels and AD was disappeared after adjustment of FG and TC (IGAP: OR = 0.97[0.80-1.17], P = 0.753; FPAD: OR = 0.98 [0.84-1.15], P = 0.831). There were no apparent instances of horizontal pleiotropy, and leave-one-out analysis showed good stability of the estimates. Our study provides evidence supporting a protective effect of blood OCN levels on AD, which is primarily mediated through regulating FG and TC levels. Further studies are warranted to elucidate the underlying physio-pathological mechanisms.


Subject(s)
Alzheimer Disease , Energy Metabolism , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteocalcin , Humans , Alzheimer Disease/blood , Alzheimer Disease/genetics , Osteocalcin/blood , Energy Metabolism/genetics , Blood Glucose/metabolism , Polymorphism, Single Nucleotide , Male , Female , Triglycerides/blood , Insulin/blood
11.
Nat Commun ; 15(1): 4426, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789507

ABSTRACT

Iron and phosphorus are essential nutrients that exist at low concentrations in surface waters and may be co-limiting resources for phytoplankton growth. Here, we show that phosphorus deficiency increases the growth of iron-limited cyanobacteria (Synechocystis sp. PCC 6803) through a PhoB-mediated regulatory network. We find that PhoB, in addition to its well-recognized role in controlling phosphate homeostasis, also regulates key metabolic processes crucial for iron-limited cyanobacteria, including ROS detoxification and iron uptake. Transcript abundances of PhoB-targeted genes are enriched in samples from phosphorus-depleted seawater, and a conserved PhoB-binding site is widely present in the promoters of the target genes, suggesting that the PhoB-mediated regulation may be highly conserved. Our findings provide molecular insights into the responses of cyanobacteria to simultaneous iron/phosphorus nutrient limitation.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Iron , Phosphorus , Synechocystis , Phosphorus/metabolism , Phosphorus/deficiency , Synechocystis/metabolism , Synechocystis/genetics , Iron/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Promoter Regions, Genetic/genetics , Seawater/microbiology , Homeostasis , Reactive Oxygen Species/metabolism
12.
Cell Death Discov ; 10(1): 216, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704372

ABSTRACT

Renal ischemia‒reperfusion injury (IRI) is one of the main causes of acute kidney injury (AKI), which is a potentially life-threatening condition with a high mortality rate. IRI is a complex process involving multiple underlying mechanisms and pathways of cell injury and dysfunction. Additionally, various types of cell death have been linked to IRI, including necroptosis, apoptosis, pyroptosis, and ferroptosis. These processes operate differently and to varying degrees in different patients, but each plays a role in the various pathological conditions of AKI. Advances in understanding the underlying pathophysiology will lead to the development of new therapeutic approaches that hold promise for improving outcomes for patients with AKI. This review provides an overview of the recent research on the molecular mechanisms and pathways underlying IRI-AKI, with a focus on regulated cell death (RCD) forms such as necroptosis, pyroptosis, and ferroptosis. Overall, targeting RCD shows promise as a potential approach to treating IRI-AKI.

13.
14.
Am J Med ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750712

ABSTRACT

BACKGROUND: Unplanned hospital readmissions are associated with adverse patient outcomes and substantial healthcare costs. It remains unknown whether physician financial incentives for enhanced discharge planning can reduce readmission risk. METHODS: In 2012, policymakers in British Columbia, Canada, introduced a $75 fee-for-service physician payment to incentivize enhanced discharge planning (the 'G78717' fee code). We used population-based administrative health data to compare outcomes among G78717-exposed and G78717-unexposed patients. We identified all non-elective hospitalizations potentially eligible for the incentive over a five-year study interval. We examined the composite risk of unplanned readmission or death and total direct healthcare costs accrued within 30 days of discharge. Propensity score overlap weights and adjustment were used to account for differences between exposed and unexposed patients. RESULTS: A total of 5262 of 24,787 G78717-exposed and 28,096 of 136,541 unexposed patients experienced subsequent unplanned readmission or death, suggesting exposure to the G78717 incentive did not reduce the risk of adverse outcomes after discharge (crude percent, 21.1% vs 20.6%; adjusted odds ratio, 0.97; 95%CI, 0.93-1.01; p=0.23). Mean direct healthcare costs within 30 days of discharge were $3082 and $2993, respectively (adjusted cost ratio, 1.00; 95%CI, 0.95-1.05; p=0.93). CONCLUSIONS: A physician financial incentive that encouraged enhanced hospital discharge planning did not reduced the risk of readmission or death, and did not significantly increase or decrease direct healthcare costs. Policymakers should consider the baseline prevalence and effectiveness of enhanced discharge planning, the magnitude and design of financial incentives, and whether auditing of incentivized activities is required when implementing similar incentives elsewhere. TRIAL REGISTRATION: ClinicalTrials.gov ID, NCT03256734.

15.
J Gen Intern Med ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748083

ABSTRACT

BACKGROUND: Patient-physician sex discordance (when patient sex does not match physician sex) has been associated with reduced clinical rapport and adverse outcomes including post-operative mortality and unplanned hospital readmission. It remains unknown whether patient-physician sex discordance is associated with "before medically advised" hospital discharge (BMA discharge; commonly known as discharge "against medical advice"). OBJECTIVE: To evaluate whether patient-physician sex discordance is associated with BMA discharge. DESIGN: Retrospective cohort study using 15 years (2002-2017) of linked population-based administrative health data for all non-elective, non-obstetrical acute care hospitalizations from British Columbia, Canada. PARTICIPANTS: All individuals with eligible hospitalizations during study interval. MAIN MEASURES: Exposure: patient-physician sex discordance. OUTCOMES: BMA discharge (primary), 30-day hospital readmission or death (secondary). RESULTS: We identified 1,926,118 eligible index hospitalizations, 2.6% of which ended in BMA discharge. Among male patients, sex discordance was associated with BMA discharge (crude rate, 4.0% vs 2.9%; adjusted odds ratio [aOR] 1.08; 95%CI 1.03-1.14; p = 0.003). Among female patients, sex discordance was not associated with BMA discharge (crude rate, 2.0% vs 2.3%; aOR 1.02; 95%CI 0.96-1.08; p = 0.557). Compared to patient-physician sex discordance, younger patient age, prior substance use, and prior BMA discharge all had stronger associations with BMA discharge. CONCLUSIONS: Patient-physician sex discordance was associated with a small increase in BMA discharge among male patients. This finding may reflect communication gaps, differences in the care provided by male and female physicians, discriminatory attitudes among male patients, or residual confounding. Improved communication and better treatment of pain and opioid withdrawal may reduce BMA discharge.

18.
Small ; : e2400830, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778739

ABSTRACT

Catalysts for zinc-air batteries (ZABs) must be stable over long-term charging-discharging cycles and exhibit bifunctional catalytic activity. In this study, by doping nitrogen-doped carbon (NC) materials with three metal atoms (Fe, Ni, and Cu), a single-atom-distributed FeNiCu-NC bifunctional catalyst is prepared. The catalyst includes Fe(Ni-doped)-N4 for the oxygen evolution reaction (OER), Fe(Cu-doped)-N4 for the oxygen reduction reaction (ORR), and the NiCu-NC catalytic structure for the oxygen reduction reaction (ORR) in the nitrogen-doped carbon nanoparticles. This single-atom distribution catalyst structure enhances the bifunctional catalytic activity. If a trimetallic single-atom catalyst is designed, it will surpass the typical bimetallic single-atom catcalyst. FeNiCu-NC exhibits outstanding performance as an electrocatalyst, with a half-wave potential (E1/2) of 0.876 V versus RHE, overpotential (Ej = 10) of 253 mV versus RHE at 10 mA cm-2, and a small potential gap (ΔE = 0.61 V). As the anode in a ZAB, FeNiCu-NC can undergo continuous charge-discharged cycles for 575 h without significant attenuation. This study presents a new method for achieving high-performance, low-cost ZABs via trimetallic single-atom doping.

19.
J Multidiscip Healthc ; 17: 2371-2387, 2024.
Article in English | MEDLINE | ID: mdl-38770171

ABSTRACT

Among cardiovascular diseases, hypertension is the most important risk factor for morbidity and mortality worldwide, and its pathogenesis is complex, involving genetic, dietary and environmental factors. The characteristics of the gut microbiota can vary in response to increased blood pressure (BP) and influence the development and progression of hypertension. This paper describes five aspects of the relationship between hypertension and the gut microbiota, namely, the different types of gut microbiota, metabolites of the gut microbiota, sympathetic activation, gut-brain interactions, the effects of exercise and dietary patterns and the treatment of the gut microbiota through probiotics, faecal microbiota transplantation (FMT) and herbal remedies, providing new clues for the future prevention of hypertension. Diet, exercise and traditional Chinese medicine may contribute to long-term improvements in hypertension, although the effects of probiotics and FMT still need to be validated in large populations.

20.
Pest Manag Sci ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775404

ABSTRACT

BACKGROUND: The beet webworm, Loxostege sticticalis, a worldwide pest of many crops, performs a seasonal migration, causing periodic outbreaks in Asia, Europe and North America. Although long-distance migration is well documented in China, patterns of transboundary migration among China, Russia and Mongolia are largely unknown. We performed a phase analysis of L. sticticalis periodic outbreaks among three countries based on 30 years of historical population data, analyzed the wind systems during migration over boundary regions, and traced the migratory routes in a case study of outbreaks in 2008 by trajectory simulation. RESULTS: Highly synchronized outbreak years of L. sticticalis were observed between China and Mongolia, China and eastern Siberia, China and western Siberia, Mongolia and eastern Siberia, eastern Siberia and western Siberia from 1978 to 2008, indicating possible transboundary migration between these regions. Winds at 300-600 m altitude, where adult migration usually occurs, also showed a high probability of northwestern winds in Haila'er (China), Chita (Russia) and Choybalsan (Mongolia), favoring successful adult migration from these areas to northern and northeastern China. Back trajectory analysis further showed that the first-generation adults that caused the severe outbreak of second-generation larvae in 2008 originated from eastern Siberia, eastern Mongolia, and the boundary regions of China-Russia and China-Mongolia. CONCLUSION: Our findings demonstrated that the source of L. sticticalis outbreaks in northern China was closely related to the outbreaks in Siberia and Mongolia via long-distance transboundary windborne migration. This information will help guide international monitoring and management strategies against this notorious pest. © 2024 Society of Chemical Industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...