Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 11(19): 2284-90, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25641852

ABSTRACT

Rational control of molecular ordering on surfaces and interfaces is vital in supramolecular chemistry and nanoscience. Here, a systematic scanning tunneling microscopy (STM) study for controlling the self-assembly behavior of alkoxylated benzene (B-OC(n)) molecules on a HOPG surface is presented. Three different phases have been observed and, of great importance, they can transform to each other by modifying the solute concentration. Further studies, particularly in situ diluting and concentrating experiments, demonstrate that the transitions among the three phases are highly controllable and reversible, and are driven thermodynamically. In addition, it is found that concentration-controlled reversible phase transitions are general for different chain lengths of B-OC(n) molecules. Such controllable and reversible phase transitions may have potential applications in the building of desirable functional organic thin films and provide a new understanding in thermodynamically driven self-assembly of organic molecules on surfaces and interfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...