Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 283(13): 8211-7, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18195003

ABSTRACT

Human cardiac fibroblasts are protected from oxidative stress triggered by inflammation after myocardial injury (Li, P. F., Dietz, R., and von Harsdorf, R. (1999) FEBS Lett. 448, 206-210) by expressing potent antioxidant defenses such as superoxide dismutases, catalases, glutathione-peroxidases, and peroxiredoxins. Recently the transcription factor FOXO3A has been shown to increase resistance to oxidative stress by up-regulation of mitochondrial superoxide dismutase and peroxisomal catalase (Kops, G. J., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W., Coffer, P. J., Huang, T. T., Bos, J. L., Medema, R. H., and Burgering, B. M. (2002) Nature 419, 316-321; Nemoto, S., and Finkel, T. (2002) Science 295, 2450-2452). We hypothesized that FOXO3A also regulates the expression of Prx III, the mitochondrial peroxiredoxin, in human cardiac fibroblasts. We found that depletion of FOXO3A leads to a dramatic reduction of Prx III mRNA and protein in serum-deprived human cardiac fibroblasts. These data suggest that endogenous FOXO3A is necessary for base-line expression of Prx III. Next, we identified two putative FOXO3A DNA binding sites in Prx III promoter at -267 and -244 nucleotides relative to the start codon. We demonstrated that both sequences are required for binding of endogenous FOXO3A to the Prx III promoter by performing electromobility shift assays and chromatin immunoprecipitation assays. Inhibition of endogenous FOXO3A by insulin growth factor 1 prevented binding of FOXO3A to Prx III promoter. In contrast, overexpression of FOXO3A increased Prx III promoter activity. Furthermore, depletion of Prx III was associated with enhanced apoptosis and oxidative stress after serum deprivation. We conclude that FOXO3A mediates Prx III expression, and this may play a critical role in the resistance to oxidative stress in cardiac fibroblasts.


Subject(s)
Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Myocardium/metabolism , Peroxiredoxins/metabolism , Apoptosis/drug effects , Cells, Cultured , Culture Media, Serum-Free , Fibroblasts , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Heart/drug effects , Humans , Hydrogen Peroxide/pharmacology , Molecular Sequence Data , Myocardium/cytology , Oxidative Stress , Peroxiredoxins/genetics , Promoter Regions, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...