Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(4): 868-880.e6, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38366595

ABSTRACT

The flavor profile of tea is influenced not only by different tea varieties but also by the surrounding soil environment. Recent studies have indicated the regulatory role of soil microbes residing in plant roots in nutrient uptake and metabolism. However, the impact of this regulatory mechanism on tea quality remains unclear. In this study, we showed that a consortium of microbes isolated from tea roots enhanced ammonia uptake and facilitated the synthesis of theanine, a key determinant of tea taste. Variations were observed in the composition of microbial populations colonizing tea roots and the rhizosphere across different seasons and tea varieties. By comparing the root microorganisms of the high-theanine tea variety Rougui with the low-theanine variety Maoxie, we identified a specific group of microbes that potentially modulate nitrogen metabolism, subsequently influencing the theanine levels in tea. Furthermore, we constructed a synthetic microbial community (SynCom) mirroring the microbe population composition found in Rougui roots. Remarkably, applying SynCom resulted in a significant increase in the theanine content of tea plants and imparted greater tolerance to nitrogen deficiency in Arabidopsis. Our study provides compelling evidence supporting the use of root microorganisms as functional microbial fertilizers to enhance tea quality.


Subject(s)
Camellia sinensis , Glutamates , Microbiota , Nitrogen/metabolism , Camellia sinensis/metabolism , Soil , Homeostasis , Tea/metabolism
2.
Hortic Res ; 10(1): uhac244, 2023.
Article in English | MEDLINE | ID: mdl-36643750

ABSTRACT

Increasing soil salinization seriously impairs plant growth and development, resulting in crop loss. The Salt-Overly-Sensitive (SOS) pathway is indispensable to the mitigation of Na + toxicity in plants under high salinity. However, whether natural variations of SOS2 contribute to salt tolerance has not been reported. Here a natural variation in the SlSOS2 promoter region was identified to be associated with root Na+/K+ ratio and the loss of salt resistance during tomato domestication. This natural variation contains an ABI4-binding cis-element and plays an important role in the repression of SlSOS2 expression. Genetic evidence revealed that SlSOS2 mutations increase root Na+/K+ ratio under salt stress conditions and thus attenuate salt resistance in tomato. Together, our findings uncovered a critical but previously unknown natural variation of SOS2 in salt resistance, which provides valuable natural resources for genetic breeding for salt resistance in cultivated tomatoes and other crops.

3.
New Phytol ; 236(4): 1326-1338, 2022 11.
Article in English | MEDLINE | ID: mdl-36028982

ABSTRACT

Plants play a primary role for the global sulfur cycle in the earth ecosystems by reduction of inorganic sulfate from the soil to organic sulfur-containing compounds. How plants sense and transduce the sulfate availability to mediate their growth remains largely unclear. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator of nutrient sensing and metabolic signaling to control cell proliferation and growth in all eukaryotes. By tissue-specific Western blotting and RNA-sequencing analysis, we investigated sulfate-TOR signal pathway in regulating shoot apex development. Here, we report that inorganic sulfate exhibits high potency activating TOR and cell proliferation to promote true leaf development in Arabidopsis in a glucose-energy parallel pathway. Genetic and metabolite analyses suggest that this sulfate activation of TOR is independent from the sulfate-assimilation process and glucose-energy signaling. Significantly, tissue specific transcriptome analyses uncover previously unknown sulfate-orchestrating genes involved in DNA replication, cell proliferation and various secondary metabolism pathways, which largely depends on TOR signaling. Systematic comparison between the sulfate- and glucose-TOR controlled transcriptome further reveals that TOR kinase, as the central growth integrator, responds to different nutrient signals to control both shared and unique transcriptome networks, therefore, precisely modulates plant proliferation, growth and stress responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Sirolimus , Sulfates/pharmacology , Sulfates/metabolism , Ecosystem , Arabidopsis/metabolism , Signal Transduction/genetics , Glucose/pharmacology , Glucose/metabolism , Plants/metabolism , TOR Serine-Threonine Kinases/metabolism , Sulfur/metabolism , Soil , RNA/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
4.
Small ; 18(14): e2105367, 2022 04.
Article in English | MEDLINE | ID: mdl-35253979

ABSTRACT

The low fracture toughness of equiaxed nanocrystalline ceramics is the main bottleneck of its wide range of commercial applications. Here, the authors report a method to overcome this limitation for preparing ultra-tough nanoceramics from using amorphous and supersaturated Al2 O3 /ZrO2 solid solution micro-powders, which is fabricated by Al-O2 ultrahigh-temperature combustion synthesis assisted rapid water cooling. The Al2 O3 /ZrO2 micro-powders containing amorphous and metastable dendritic solid solutions can induce the three-level micro-nano structure (submicro/nano/supra-nano) of the high-content (up to 70-90%) columnar submicro-crystals accompanied with high-density nanoprecipitation after sintering or annealing, which makes the fracture toughness of Al2 O3 /ZrO2 ceramics with a unique combination of high-strength and high-hardness increased by 50-100%. This method is beneficial to microstructural design of high-performance ceramics and can be widely applied to various ceramic systems, coupled with simplicity, low-cost, and high-efficiency, making it suitable to industrially produce large-sized nanoceramics with specific grain geometry in large quantities.


Subject(s)
Ceramics , Zirconium , Ceramics/chemistry , Hardness , Materials Testing , Powders , Zirconium/chemistry
5.
Proc Natl Acad Sci U S A ; 117(51): 32223-32225, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288701

ABSTRACT

The plant growth hormone auxin controls cell identity, cell division, and expansion. In the primary root of Arabidopsis there is a robust auxin gradient with a peak concentration at the tip of the meristem and a significant decrease throughout the elongation zone. The molecular mechanisms of how such a steep auxin gradient is established and maintained, and how this auxin gradient within the root dynamically adjusts in response to environmental stimuli are still largely unknown. Here, using a large-scale Arabidopsis mutant screening, we described the identification of PIN2 (PIN-FORMED 2), an auxin efflux facilitator, as a key downstream regulator in glucose-TOR (target of rapamycin) energy signaling. We demonstrate that glucose-activated TOR phosphorylates and stabilizes PIN2 and therefore influences the gradient distribution of PIN2 in the Arabidopsis primary root. Interestingly, dysregulation of TOR or PIN2 disrupts the glucose-promoted low auxin region located in the elongation zone that is essential for cell elongation. Taken together, our results shed light on how carbon and metabolic status can be tightly integrated with the hormone-driven processes to orchestrate complex plant growth programs.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Glucose/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Glucose/pharmacology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Indoleacetic Acids/metabolism , Mutation , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation , Plant Cells/metabolism , Plant Roots/cytology , Plant Roots/drug effects , Plant Roots/metabolism , Plants, Genetically Modified , Protein Stability , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...