Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 21(1): 399, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37904235

ABSTRACT

BACKGROUNDS: The novel concept of microwave dynamic therapy (MDT) solves the problem of incomplete tumor eradication caused by non-selective heating and uneven temperature distribution of microwave thermal therapy (MWTT) in clinic, but the poor delivery of microwave sensitizer and the obstacle of tumor hypoxic microenvironment limit the effectiveness of MDT. RESULTS: Herein, we engineer a liquid metal-based nanozyme LM@ZIF@HA (LZH) with eutectic Gallium Indium (EGaIn) as the core, which is coated with CoNi-bimetallic zeolite imidazole framework (ZIF) and hyaluronic acid (HA). The flexibility of the liquid metal and the targeting of HA enable the nanozyme to be effectively endocytosed by tumor cells, solving the problem of poor delivery of microwave sensitizers. Due to the catalase-like activity, the nanozyme catalyze excess H2O2 in the tumor microenvironment to generate O2, alleviating the restriction of the tumor hypoxic microenvironment and promoting the production of ROS under microwave irradiation. In vitro cell experiments, the nanozyme has remarkable targeting effect, oxygen production capacity, and microwave dynamic effect, which effectively solves the defects of MDT. In the constructed patient-derived xenograft (PDX) model, the nanozyme achieves excellent MDT effect, despite the heterogeneity and complexity of the tumor model that is similar to the histological and pathological features of the patient. The tumor volume in the LZH + MW group is only about 1/20 of that in the control group, and the tumor inhibition rate is as high as 95%. CONCLUSION: The synthesized nanozyme effectively solves the defects of MDT, improves the targeted delivery of microwave sensitizers while regulating the hypoxic microenvironment of tumors, and achieves excellent MDT effect in the constructed PDX model, providing a new strategy for clinical cancer treatment.


Subject(s)
Breast Neoplasms , Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Microwaves , Hydrogen Peroxide , Neoplasms/drug therapy , Metals/therapeutic use , Cell Line, Tumor , Tumor Microenvironment
2.
Biomater Sci ; 10(13): 3503-3513, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35593298

ABSTRACT

The presence of high content glutathione (GSH) provides an effective "protective shield" for tumor cells, which undoubtedly is a huge impediment to reactive oxygen species (ROS)-based treatment. Fortunately, divalent copper (Cu2+) can not only consume GSH, destroying the protection mechanism of GSH, but also can be reduced to Cu+ with excellent Fenton-like reaction activity. Hence, capitalizing on the properties of liquid metals, we introduced Cu with three different valances via an in situ replacement reaction. A stable core-shell liquid-metal based "Cu storage pool" was obtained. It can effectively deplete GSH within the cells, and simultaneously produce ·OH through a Fenton-like reaction, further improving the effect of chemodynamic therapy (CDT). Under microwave irradiation, it is also capable of producing a large amount of ROS to promote tumor treatment. In addition, the loading of ionic liquid endows LZC@IL nanoparticles with certain microwave heating performance, which is able to augment microwave thermal therapy (MWTT). With the combination of CDT, microwave dynamic therapy (MDT) and MWTT, LZC@IL has an excellent effect on tumor elimination. This work offers a new idea for the application of liquid metals and the combined treatment of tumors, which has potential application value.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Cell Line, Tumor , Glutathione , Humans , Hydrogen Peroxide , Microwaves , Neoplasms/drug therapy , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...