Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Opt ; 57(4): 678-683, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29400730

ABSTRACT

The polarization dependence of a directional coupler (DC) based on asymmetric cross-slot waveguides is investigated. Due to structural birefringence, the coupling behaviors of the quasi-TE and quasi-TM modes in the DC vary with the waveguide geometry. A polarization-independent directional coupler (PIDC) and polarization beam splitter (PBS) are proposed by tailoring the ratio of the coupling length for quasi-TE and quasi-TM modes. The simulated results show that the coupling lengths of the designed PIDC and PBS are 8 and 28.25 µm, respectively. Both the PIDC and PBS show an insertion loss (IL) <0.7 dB on a bandwidth over 100 nm. The extinction ratios are ∼20 dB for PIDC and ∼14 dB for PBS. The fabrication-error tolerance of the practical devices is also discussed. In this study, we employ a commercial software tool for finite difference eigenmode and three-dimensional finite difference time domain methods to perform the numerical simulations.

2.
Sci Rep ; 6: 19801, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26823292

ABSTRACT

Optofluidics, which integrates microfluidics and micro-optical components, is crucial for optical sensing, fluorescence analysis, and cell detection. However, the realization of an integrated system from optofluidic manipulation and a microfluidic channel is often hampered by the lack of a universal substrate for achieving monolithic integration. In this study, we report on an integrated optofluidic-microfluidic twin channels chip fabricated by one-time exposure photolithography, in which the twin microchannels on both surfaces of the substrate were exactly aligned in the vertical direction. The twin microchannels can be controlled independently, meaning that fluids could flow through both microchannels simultaneously without interfering with each other. As representative examples, a tunable hydrogel microlens was integrated into the optofluidic channel by femtosecond laser direct writing, which responds to the salt solution concentration and could be used to detect the microstructure at different depths. The integration of such optofluidic and microfluidic channels provides an opportunity to apply optofluidic detection practically and may lead to great promise for the integration and miniaturization of Lab-on-a-Chip systems.


Subject(s)
Biosensing Techniques/instrumentation , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Optics and Photonics/instrumentation , Biosensing Techniques/methods , Hydrogels/chemistry , Lasers , Microfluidic Analytical Techniques/methods , Optics and Photonics/methods
SELECTION OF CITATIONS
SEARCH DETAIL