Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37374477

ABSTRACT

Powder laying is a necessary procedure during powder bed additive manufacturing (PBAM), and the quality of powder bed has an important effect on the performance of products. Because the powder particle motion state during the powder laying process of biomass composites is difficult to observe, and the influence of the powder laying process parameters on the quality of the powder bed is still unclear, a simulation study of the biomass composite powder laying process during powder bed additive manufacturing was conducted using the discrete element method. A discrete element model of walnut shell/Co-PES composite powder was established using the multi-sphere unit method, and the powder-spreading process was numerically simulated using two different powder spreading methods (rollers/scrapers). The results showed that the quality of powder bed formed by roller laying was better than that formed by scrapers with the same powder laying speed and powder laying thickness. For both of the two different spreading methods, the uniformity and density of the powder bed decreased as spreading speed increased, although the spreading speed had a more important influence on scraper spreading compared to roller spreading. As powder laying thickness increased, the powder bed formed by the two different powder laying methods became more uniform and denser. When the powder laying thickness was less than 110µm, the particles were easily blocked at the powder laying gap and are pushed out of the forming platform, forming many voids, and decreasing the powder bed's quality. When the powder thickness was greater than 140 µm, the uniformity and density of the powder bed increased gradually, the number of voids decreased, and the quality of the powder bed improved.

2.
Materials (Basel) ; 16(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37241475

ABSTRACT

In order to explore the effect of printing parameter configurations on the forming performance of Digital Light Processing (DLP) 3D printed samples, printing experiments were carried out on the enhanced adhesion and efficient demolding of DLP 3D printing devices. The molding accuracy and mechanical properties of the printed samples with different thickness configurations were tested. The test results show that when the layer thickness increases from 0.02 mm to 0.22 mm, the dimensional accuracy in the X and Y directions increases first and then decreases, while the dimensional accuracy in the Z direction decreases, and the dimensional accuracy is the highest when the layer thickness is 0.1 mm. The mechanical properties of the samples decline with an increasing layer thickness of the samples. The mechanical properties of the 0.08 mm layer thickness are the best, and the tensile, bending, and impact properties are 22.86 Mpa, 48.4 Mpa, and 35.467 KJ/m2, respectively. Under the condition of ensuring molding accuracy, the optimal layer thickness of the printing device is determined to be 0.1 mm. The analysis of the section morphology of samples with different thicknesses illustrates that the fracture of the sample is a river-like brittle fracture, and there are no defects such as pores in the section of samples.

3.
Materials (Basel) ; 14(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477643

ABSTRACT

The agricultural and forestry waste walnut shell and copolyester hot-melt adhesives (Co-PES) powder were selected as feedstock. A kind of low-cost, low-power consumption, and environmentally friendly walnut shell/Co-PES powder composites (WSPC) was used for selective laser sintering (SLS). Though analyzing the size and morphology of walnut shell particle (≤550 µm) as well as performing an analysis of surface roughness, density, and mechanical test of WSPC parts with different particle sizes, results showed that the optimal mechanical performance (tensile strength of 2.011 MPa, bending strength of 3.5 MPa, impact strength of 0.718 KJ/m2) as walnut shell powder particle size was 80 to 120 µm. When walnut shell powder particle diameter was 120 to 180 µm, the minimum value of surface roughness of WSPC parts was 15.711 µm and density was approximately the maximum (0.926 g/cm3).

4.
RSC Adv ; 10(40): 23644-23652, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-35517319

ABSTRACT

Selective laser sintering (SLS) is a desirable method for fabricating human motion detecting sensors as it can produce a complex shape with different materials that are machinable to specific applications. The bottleneck in the SLS processing of sensors is the preparation of a material that is both flexible and conductive. In this study, carbon nanotubes (CNTs) were selected as a conductive nanofiller and dispersed into a flexible thermoplastic polyurethane (TPU) polymer matrix to prepare TPU/CNT composites for SLS processing pressure sensors. CNTs were first oxidized to prevent them from aggregating in the TPU matrix. TPU/CNT composites were prepared via solution blending and ball milling methods, and the dispersion of the CNTs in the composites was observed by scanning electron microscopy. The thermal properties of TPU/CNT composites with different CNT content were measured, and processing parameters used in the SLS were determined based on differential scanning calorimetry measurements. SLS-processed TPU/CNT composites were prepared with different conductivity and piezoresistive properties. Percolation theory and piezoresistive performance results proved that a 0.25 wt% CNT-containing TPU/CNT composite showed the best pressure sensing ability, and it was successfully used as a sensor to detect plantar pressure distribution in a human foot.

5.
Materials (Basel) ; 11(5)2018 May 11.
Article in English | MEDLINE | ID: mdl-29751667

ABSTRACT

Agricultural and forestry wastes are used as materials for selective laser sintering (SLS) to alleviate resource shortage, reduce the pollution of the environment, lower the cost of materials, and improve the accuracy of parts produced by SLS. However, the mechanical properties of wood⁻plastic parts are poor, and thus they cannot be applied widely. In order to improve the mechanical properties of wood⁻plastic parts, a new type of walnut shell polymer composite (WSPC) was prepared by a polymer mixing method and was used to produce parts via SLS. Additionally, the dimensional accuracy, morphologies, density, and mechanical properties of the WSPC parts were studied. The results showed that the addition of a small amount of copolyamide (Co-PA) powder could effectively improve the mechanical properties and decrease the density of the WSPC parts. By increasing the amount of Co-PA powder and decreasing that of copolyester (Co-PES) powder, the mechanical properties first increased, then decreased, and finally increased again; in addition, the density first decreased then increased. By increasing the preheating temperature, the mechanical properties and density of the WSPC parts were enhanced.

6.
Materials (Basel) ; 10(12)2017 Dec 02.
Article in English | MEDLINE | ID: mdl-29207485

ABSTRACT

To alleviate resource shortage, reduce the cost of materials consumption and the pollution of agricultural and forestry waste, walnut shell composites (WSPC) consisting of walnut shell as additive and copolyester hot melt adhesive (Co-PES) as binder was developed as the feedstock of selective laser sintering (SLS). WSPC parts with different ingredient proportions were fabricated by SLS and processed through after-treatment technology. The density, mechanical properties and surface quality of WSPC parts before and after post processing were analyzed via formula method, mechanical test and scanning electron microscopy (SEM), respectively. Results show that, when the volume fraction of the walnut shell powder in the WSPC reaches the maximum (40%), sintered WSPC parts have the smallest warping deformation and the highest dimension precision, although the surface quality, density, and mechanical properties are low. However, performing permeating resin as the after-treatment technology could considerably increase the tensile, bending and impact strength by 496%, 464%, and 516%, respectively.

7.
Zoolog Sci ; 26(11): 771-7, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19877837

ABSTRACT

We show that the learned vocalizations of male and female large-billed crows (Corvus macrorhynchos) are similar and that their functions and physical features show significant differences from those of other oscine species. We investigate whether the song control nuclei of crows show any sexual differences in size, reflecting differences in their singing behavior, and whether these nuclei are different from those of other songbirds in terms of neural connectivity size and relative to the forebrain. Our Nissl staining results reveal that 1) of the four song nuclei examined (HVC; the robust nucleus of the arcopallium [RA]; Area X; and the dorsolateral medial nucleus [DLM]), HVC, RA, and Area X volumes are significantly larger in males than in females, but DLM volume and body and brain weights show no significant gender differences; and 2) the sizes of song nuclei relative to the forebrain are within the range of other oscines. By injecting a neural tract tracer (DiI) into various song nuclei in brain slices, we found that, as in other songbirds, HVC projects to RA and Area X, while Area X projects to the lateral magnocellular nucleus of the anterior nidopallium (IMAN) and DLM, DLM to IMAN, and IMAN to RA. Our results Indicate that, although the crow has songs very different from those of other oscine species, Its song nuclei and the connections between them are not obviously different.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Crows/anatomy & histology , Crows/physiology , Sex Characteristics , Vocalization, Animal , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...