Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
ACS Chem Neurosci ; 15(9): 1893-1903, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38613492

ABSTRACT

Depression is a common mental disorder. In recent years, more and more attention has been paid to depression and its etiology and pathogenesis. This review aims to explore the neuroprotective and antidepressant effects of hop components. By establishing an in vitro cell damage model using PC12 cells induced by corticosterone (CORT) and an in vivo depression model through the intracranial injection of lipopolysaccharide (LPS) in mice, hop ethyl acetate extract (HEA) was used to study the protective effect and mechanism of HEA on neuronal cells in vitro and the antidepression effect and mechanism in vivo. The results showed that HEA increased the survival and decreased the rate of lactate dehydrogenase (LDH) release, apoptosis, and the ROS and NO content of CORT-induced PC12 cells. HEA alleviated depressive-like behavior, neuroinflammation, reduction of norepinephrine, and dendritic spines induced by intracerebroventricular injection of LPS in mice and increases the expression levels of BDNF, SNAP 25, and TrkB proteins without any significant side effects or toxicity. Hops demonstrated significant comprehensive utilization value, and this work provided an experimental basis for the role of hops in the treatment of depression and provided a basis for the development of HEA for antidepressant drugs or dietary therapy products.


Subject(s)
Acetates , Antidepressive Agents , Corticosterone , Depression , Humulus , Neuroprotective Agents , Plant Extracts , Animals , PC12 Cells , Mice , Depression/drug therapy , Plant Extracts/pharmacology , Acetates/pharmacology , Antidepressive Agents/pharmacology , Rats , Neuroprotective Agents/pharmacology , Male , Humulus/chemistry , Lipopolysaccharides/pharmacology , Disease Models, Animal , Behavior, Animal/drug effects
2.
Org Biomol Chem ; 22(10): 2075-2080, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38363158

ABSTRACT

The installation of selenium groups has become an essential step across a number of industries such as agrochemicals, drug discovery, and materials. However, direct C(sp3)-H selenation, which is most atom economical, remains a formidable challenge, and only a few examples have been reported to date. In this article, we introduce the transition metal-free C(sp3)-H selenation with the easily available ß-ketosulfones and diselenides as the material source. This benign protocol permits access to a broad spectrum of α-aryl(alkyl) seleno-ß-ketosulfones in high yields with outstanding functional group compatibility. Distinct advantages of this protocol over all previous methods encompass the utilization of base and air as an oxidant, room temperature, and enhanced green chemistry matrices.

3.
Sci Rep ; 13(1): 16055, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749171

ABSTRACT

Pyroptosis is a kind of programmed cell death triggered by the inflammasome. Growing evidence has revealed the crucial utility of pyroptosis in tumors. However, the potential mechanism of pyroptosis in clear cell renal cell carcinoma (ccRCC) is still unclear. In this research, we systematically analyze the genetic and transcriptional alterations of pyroptosis-related genes (PRGs) in ccRCC, identify pyroptosis-related subtypes, analyze the clinical and microenvironmental differences among different subtypes, develop a corresponding prognostic model to predict the prognosis of patients, and interpret the effect of pyroptosis on ccRCC microenvironment. This study provides a new perspective for a comprehensive understanding of the role of pyroptosis in ccRCC and its impact on the immune microenvironment, and a reliable scoring system was established to predict patients' prognosis.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Pyroptosis/genetics , Tumor Microenvironment/genetics , Kidney Neoplasms/genetics
4.
Heliyon ; 9(5): e15693, 2023 May.
Article in English | MEDLINE | ID: mdl-37305457

ABSTRACT

As the dominant histological subtype of kidney cancer, clear cell renal cell carcinoma (ccRCC) poorly responds to conventional chemotherapy and radiotherapy. Although novel immunotherapies such as immune checkpoint inhibitors could have a durable effect in treating ccRCC patients, the limited availability of dependable biomarkers has restricted their application in clinic. In the study of carcinogenesis and cancer therapies, there has been a recent emphasis on researching programmed cell death (PCD). In the current study, we discovered the enriched and prognostic PCD in ccRCC utilizing gene set enrichment analysis (GSEA) and investigate the functional status of ccRCC patients with different PCD risks. Then, genes related to PCD that had prognostic value in ccRCC were identified for the conduction of non-negative matrix factorization to cluster ccRCC patients. Next, the tumor microenvironment, immunogenicity, and therapeutic response in different molecular clusters were analyzed. Among PCD, apoptosis and pyroptosis were enriched in ccRCC and correlated with prognosis. Patients with high PCD levels were related to poor prognosis and a rich but suppressive immune microenvironment. PCD-based molecular clusters were identified to differentiate the clinical status and prognosis of ccRCC. Moreover, the molecular cluster with high PCD levels may correlate with high immunogenicity and a favorable therapeutic response to ccRCC. Furthermore, a simplified PCD-based gene classifier was established to facilitate clinical application and used transcriptome sequencing data from clinical ccRCC samples to validate the applicability of the gene classifier. We thoroughly extended the understanding of PCD in ccRCC and constructed a PCD-based gene classifier for differentiation of the prognosis and therapeutic efficacy in ccRCC.

5.
Front Genet ; 14: 1038924, 2023.
Article in English | MEDLINE | ID: mdl-36816030

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) belongs to one of the 10 most frequently diagnosed cancers worldwide and has a poor prognosis at the advanced stage. Although multiple therapeutic agents have been proven to be curative in ccRCC, their clinical application was limited due to the lack of reliable biomarkers. Considering the important role of basement membrane (BM) in tumor metastasis and TME regulation, we investigated the expression of BM-related genes in ccRCC and identified prognostic BM genes through differentially expression analysis and univariate cox regression analysis. Then, BM-related ccRCC subtypes were recognized through consensus non-negative matrix factorization based on the prognostic BM genes and evaluated with regard to clinical and TME features. Next, utilizing the differentially expressed genes between the BM-related subtypes, a risk scoring system BMRS was established after serial analysis of univariate cox regression analysis, lasso regression analysis, and multivariate cox regression analysis. Time-dependent ROC curve revealed the satisfactory prognosis predictive capacity of BMRS with internal, and external validation. Multivariate analysis proved the independent predictive ability of BMRS and a BMRS-based nomogram was constructed for clinical application. Some featured mutants were discovered through genomic analysis of the BMRS risk groups. Meanwhile, the BMRS groups were found to have distinct immune scores, immune cell infiltration levels, and immune-related functions. Moreover, with the help of data from The Cancer Immunome Atlas (TCIA) and Genomics of Drug Sensitivity in Cancer (GDSC), the potential of BMRS in predicting therapeutic response was evaluated and some possible therapeutic compounds were proposed through ConnectivityMap (CMap). For the practicability of BMRS, we validated the expression of BMRS-related genes in clinical samples. After all, we identified BM-related ccRCC subtypes with distinct clinical and TME features and constructed a risk scoring system for the prediction of prognosis, therapeutic responses, and potential therapeutic agents of ccRCC. As ccRCC systemic therapy continues to evolve, the risk scoring system BMRS we reported may assist in individualized medication administration.

6.
Angew Chem Int Ed Engl ; 61(52): e202212090, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36316627

ABSTRACT

A 19-membered open-cage fullerene derivative was prepared from C60 in 7 steps and 5.5 % yield through the peroxide-mediate pathway. There are four carbonyl groups, an ether oxygen and a quinoxaline moiety on the rim of the orifice. A chloride anion could be inserted into its cavity by heating with hydrochloric acid at 60 °C for 4 h. Encapsulation of fluoride, bromide and iodide anions was also achieved at slightly more forcing conditions, 90 °C for 14 h. Single crystal X-ray structures of the sodium salt of the chloride and the bromide encapsulated derivatives were obtained, which showed the halide anion in the center of the cavity and two sodium cations connecting two cages through coordination to the oxygen atoms on the rim of the orifices. The halide encapsulation ratio is quantitative in the isolated products.

7.
Front Immunol ; 13: 830220, 2022.
Article in English | MEDLINE | ID: mdl-35677048

ABSTRACT

Unlike early clear cell renal cell carcinoma (ccRCC), locally advanced and metastatic ccRCC present poor treatment outcomes and prognosis. As immune checkpoint inhibitors have achieved favorable results in the adjuvant treatment of metastatic ccRCC, we aimed to investigate the immunogenomic landscape during ccRCC progression and its potential impact on immunotherapy and prognosis. Using multi-omics and immunotherapy ccRCC datasets, an integrated analysis was performed to identify genomic alterations, immune microenvironment features, and related biological processes during ccRCC progression and evaluate their relevance to immunotherapy response and prognosis. We found that aggressive and metastatic ccRCC had higher proportions of genomic alterations, including SETD2 mutations, Del(14q), Del(9p), and higher immunosuppressive cellular and molecular infiltration levels. Of these, the Del(14q) might mediate immune escape in ccRCC via the VEGFA-VEGFR2 signaling pathway. Furthermore, immune-related pathways associated with ccRCC progression did not affect the immunotherapeutic response to ccRCC. Conversely, cell cycle pathways not only affected ccRCC progression and prognosis, but also were related to ccRCC immunotherapeutic response resistance. Overall, we described the immunogenomic characteristics of ccRCC progression and their correlations with immunotherapeutic response and prognosis, providing new insights into their prediction and the development of novel therapeutic strategies.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/therapy , Genomics , Humans , Immunotherapy , Kidney Neoplasms/drug therapy , Kidney Neoplasms/therapy , Prognosis , Tumor Microenvironment/genetics
8.
ACS Omega ; 7(18): 15411-15422, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35571818

ABSTRACT

Three different pore sizes of oxacalix[m]arene[n]pyrimidines modified with a naphthalene substituent were synthesized and characterized by HRMS, 1H NMR, and single-crystal analysis (8OA and 8OA-N). Steady-state spectroscopy indicates these naphthalene-oxacalix[m]arenes exhibit good fluorescence properties, which isattributed to the locally excited (LE) state emission, and electrochemical results show that the photoinduced electron transfer (PET) process occurs from the naphthalene substituent to the linked pyrimidine. Nanosecond transient absorption spectra, singlet oxygen quantum yields (ΦΔ4OA-N = 45.1%, ΦΔ6OA-N = 56.6%, and ΦΔ8OA-N = 65.7%) and theoretical calculations demonstrate that the torsion angle between the donor (naphthalene) and the acceptor (pyrimidine) promotes intersystem crossing (ISC), and the lifetime of the triplet state reaches ca. 8 ms. Interestingly, all three host molecules (4OA-N, 6OA-N, and 8OA-N) showed a high affinity for fullerene C60, and significant binding constants in the range of 4.10-6.68 × 104 M-1 were obtained by fluorescence titration; in contrast, previous reports indicated that the similar oxacalix[m]arene[n]pyrimidine scaffold could not efficiently complex with C60. In the frontier molecular orbital theory calculations of the supramolecular system of 4OA-N@C 60 , the HOMO is distributed on 4OA-N and the LUMO is localized on fullerene. The calculation results further demonstrated that there are strong interactions between the host and the fullerene guest, which is consistent with the result of the experiments. The characteristic photophysical properties of these novel naphthyl-decorated oxacalix[m]arene[n]pyrimidines broaden their application field, and the stable host-guest system with fullerene can be applied to supramolecular chemistry.

9.
ACS Omega ; 7(17): 14690-14696, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35557655

ABSTRACT

Although Amphotericin B (AmB) is considered as the "gold standard" treatment for deep fungal infections, owing to its excellent antifungal effect, it often causes severe hemolytic toxicity and nephrotoxicity, which limits its clinical use. We designed and synthesized AmB derivatives by attaching salicylic acid (SA) to the carboxyl group and confirmed their structures using 1H NMR, 13C NMR, HR-MS, and IR. We evaluated its biological activity in vitro and measured its ultraviolet-visible (UV-vis) absorption spectrum. The AmB-SA conjugates exhibited good antifungal effects against Candida albicans, Candida glabrata, and Cryptococcus neoformans compared with AmB, and the renal cytotoxicity toward HEK 293T cells in vitro was significantly reduced, with almost no nephrotoxicity in the therapeutic window of the drug. At the same time, the hemolytic toxicity was significantly reduced. Therefore, modification of AmB by introducing SA is an effective strategy to maintain the broad antifungal activity of AmB and reduce its cytotoxicity. These AmB derivatives could be applied in clinical therapy in the future.

10.
Transplant Proc ; 53(7): 2407-2414, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34474914

ABSTRACT

BACKGROUND: To examine the effect of interleukin (IL)-21 on the proliferation, subsets, and immunological characteristics of CD8+CD28- T cells stimulated by IL-15 in vitro. METHODS: Purified CD8+ T cells stimulated with allogeneic CD2- cells obtained from the peripheral blood mononuclear cells of healthy volunteers were cocultured in the presence of IL-15 alone or IL-21 and IL-15 combined. The dynamic changes in the proliferation, subsets, and phenotypic characteristics of CD8+CD28- T cells were detected. Our work, involving human participants, complied with the Declaration of Helsinki and the Declaration of Istanbul. RESULTS: IL-21 prevented the expansion of CD8+CD28- T cells stimulated by IL-15 by sustaining CD28 expression at the mRNA level. IL-15 altered the expanded CD8+CD28- T cell memory subsets over the coculture duration, but the addition of IL-21 could change the subset distribution. In the presence of IL-15, the in vitro-expanded CD8+CD28- T cells were mainly intermediately differentiated cells, but they were mainly late differentiated cells in the presence of IL-21 plus IL-15. Moreover, IL-21 upregulated the expression of toxic molecules in the IL-15-expanded CD8+CD28- T cells. CONCLUSIONS: IL-21 prevents IL-15-induced CD8+CD28- T cell amplification by downregulating CD28 at the transcriptional level. IL-21 can alter the subpopulation distribution and phenotypic characteristics of CD8+CD28- T cells stimulated by IL-15.


Subject(s)
CD28 Antigens , Interleukin-15 , CD8-Positive T-Lymphocytes , Humans , Interleukins , Leukocytes, Mononuclear , Lymphocyte Activation , T-Lymphocyte Subsets
11.
J Immunol Res ; 2021: 9921466, 2021.
Article in English | MEDLINE | ID: mdl-34368371

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer whose incidence and mortality rate are increasing. Identifying immune-related lncRNAs and constructing a model would probably provide new insights into biomarkers and immunotherapy for ccRCC and aid in the prognosis prediction. METHODS: The transcription profile and clinical information were obtained from The Cancer Genome Atlas (TCGA). Immune-related gene sets and transcription factor genes were downloaded from GSEA website and Cistrome database, respectively. Tumor samples were divided into the training set and the testing set. Immune-related differentially expressed lncRNAs (IDElncRNAs) were identified from the whole set. Univariate Cox regression, LASSO, and stepwise multivariate Cox regression were performed to screen out ideal prognostic IDElncRNAs (PIDElncRNAs) from the training set and develop a multi-lncRNA signature. RESULTS: Consequently, AC012236.1, AC078778.1, AC078950.1, AC087318.1, and AC092535.4 were screened to be significantly related to the prognosis of ccRCC patients, which were used to establish the five-lncRNA signature. Its wide diagnostic capacity was revealed in different subgroups of clinical parameters. Then AJCC-stage, Fuhrman-grade, pharmaceutical, age, and risk score regarded as independent prognostic factors were integrated to construct a nomogram, whose good performance in predicting 3-, 5-, and 7-year overall survival of ccRCC patients was revealed by time-dependent ROC curves and verified by the testing sets and ICGC dataset. The calibration plots showed great agreement of the nomogram between predicted and observed outcomes. Functional enrichment analysis showed the signature and each lncRNA were mainly enriched in pathways associated with regulation of immune response. Several kinds of tumor-infiltrating immune cells like regulatory T cells, T follicular helper cells, CD8+ T cells, resting mast cells, and naïve B cells were significantly correlated with the signature. CONCLUSION: Therefore, we constructed a five-lncRNA model integrating clinical parameters to help predict the prognosis of ccRCC patients. The five immune-related lncRNAs could potentially be therapeutic targets for immunotherapy in ccRCC in the future.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell/etiology , Carcinoma, Renal Cell/mortality , Immunity/genetics , Kidney Neoplasms/etiology , Kidney Neoplasms/mortality , RNA, Long Noncoding/genetics , Computational Biology/methods , Databases, Genetic , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Molecular Sequence Annotation , Prognosis , Proportional Hazards Models , Transcription Factors/genetics
12.
Bio Protoc ; 11(10): e4020, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34150927

ABSTRACT

CD8+CD28- T suppressor cells (Ts) have been documented to promote immune tolerance by suppressing effector T cell responses to alloantigens following transplantation. The suppressive function of T cells has been defined as the inhibitory effect of Ts on the proliferation rate of effector T cells. 3H-thymidine is a classical immunological technique for assaying T cell proliferation but this approach has drawbacks such as the inconvenience of working with radioactive materials. Labeling T cells with CFSE allows relatively easy tracking of generations of proliferated cells. In this report, we utilized antigen presenting cells (APCs) and T cells matched for human leukocyte antigen (HLA) class I or class II to study CD8+CD28- T cell suppression generated in vitro by this novel approach of combining allogeneic APCs and γc cytokines. The expanded CD8+CD28- T cells were isolated (purity 95%) and evaluated for their suppressive capacity in mixed lymphocyte reactions using CD4+ T cells as responders. Here, we present our adapted protocol for assaying the Ts allospecific suppression of CFSE-labeled responder T cells.

13.
Front Immunol ; 12: 653358, 2021.
Article in English | MEDLINE | ID: mdl-33746989

ABSTRACT

Immune checkpoint inhibitors (ICIs) are currently a first-line treatment option for clear cell renal cell carcinoma (ccRCC). However, recent clinical studies have shown that a large number of patients do not respond to ICIs. Moreover, only a few patients achieve a stable and durable response even with combination therapy based on ICIs. Available studies have concluded that the response to immunotherapy and targeted therapy in patients with ccRCC is affected by the tumor immune microenvironment (TIME), which can be manipulated by targeted therapy and tumor genomic characteristics. Therefore, an in-depth understanding of the dynamic nature of the TIME is important for improving the efficacy of immunotherapy or combination therapy in patients with advanced ccRCC. Here, we explore the possible mechanisms by which the TIME affects the efficacy of immunotherapy and targeted therapy, as well as the factors that drive dynamic changes in the TIME in ccRCC, including the immunomodulatory effect of targeted therapy and genomic changes. We also describe the progress on novel therapeutic modalities for advanced ccRCC based on the TIME. Overall, this review provides valuable information on the optimization of combination therapy and development of individualized therapy for advanced ccRCC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Renal Cell/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Precision Medicine/methods , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/mortality , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Kidney Neoplasms/mortality , Molecular Targeted Therapy/methods , Progression-Free Survival , Randomized Controlled Trials as Topic , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
14.
J Immunol Res ; 2020: 2415374, 2020.
Article in English | MEDLINE | ID: mdl-33376751

ABSTRACT

Acute rejection (AR) after kidney transplant is one of the major obstacles to obtain ideal graft survival. Reliable molecular biomarkers for AR and renal allograft loss are lacking. This study was performed to identify novel long noncoding RNAs (lncRNAs) for diagnosing AR and predicting the risk of graft loss. The several microarray datasets with AR and nonrejection specimens of renal allograft downloaded from Gene Expression Omnibus database were analyzed to screen differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs). Univariate and multivariate Cox regression analyses were used to identify optimal prognosis-related DElncRNAs for constructing a risk score model. 39 common DElncRNAs and 185 common DEmRNAs were identified to construct a lncRNA-mRNA regulatory relationship network. DElncRNAs were revealed to regulate immune cell activation and proliferation. Then, 4 optimal DElncRNAs, ATP1A1-AS1, CTD-3080P12.3, EMX2OS, and LINC00645, were selected from 17 prognostic DElncRNAs to establish the 4-lncRNA risk score model. In the training set, the high-risk patients were more inclined to graft loss than the low-risk patients. Time-dependent receiver operating characteristics analysis revealed the model had good sensitivity and specificity in prediction of 1-, 2-, and 3-year graft survival after biopsy (AUC = 0.891, 0.836, and 0.733, respectively). The internal testing set verified the result well. Gene set enrichment analysis which expounded NOD-like receptor, the Toll-like receptor signaling pathways, and other else playing important role in immune response was enriched by the 4 lncRNAs. Allograft-infiltrating immune cells analysis elucidated the expression of 4 lncRNAs correlated with gamma delta T cells and eosinophils, etc. Our study identified 4 novel lncRNAs as potential biomarkers for AR of renal allograft and constructed a lncRNA-based model for predicting the risk of graft loss, which would provide new insights into mechanisms of AR.


Subject(s)
Allografts , Biomarkers , Graft Rejection/etiology , Kidney Transplantation , RNA, Long Noncoding/genetics , Acute Disease , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Humans , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Molecular Sequence Annotation , RNA Interference , RNA, Messenger/genetics , Transcriptome
15.
BMC Immunol ; 21(1): 23, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32349664

ABSTRACT

BACKGROUND: CD8+CD28- T suppressor (Ts) cells play critical role in transplant tolerance. Our previous study has generated CD8+CD28- Ts cells in vitro which exert robust allospecific suppressive capacity in vitro. RESULTS: CD8+CD28- Ts cells were expanded by stimulating human CD8+ T cells with allogeneic antigen presenting cells in the presence of the common gamma chain cytokines IL-2, IL-7 and IL-15 in vitro, and were further verified in vitro through day 7 to 11 for their persistency of the allospecific suppressive capacity. When CD8+CD28- Ts cells were adoptively transferred into NOG mice, their capacity to inhibit CD4+ T cell proliferation in allospecific manner remained potent on 11 days after their injection. The mechanisms for expansion of CD8+CD28- Ts cells by the common gamma chain cytokines were investigated. These included promoting CD8+CD28- T cells proliferation, converting CD8+CD28+ T cells to CD8+CD28- T cells and decreasing CD8+CD28- T cell death. Furthermore, the expanded CD8+CD28- Ts cells showed upregulation of the co-inhibitory molecule Tim-3 and down-regulation of the cytotoxic molecule granzyme B. CONCLUSIONS: In summary, these results demonstrated that the in vitro-expanded human CD8+CD28- T cells retained potent allospecific suppressive capacity in vivo and depicted multiple mechanisms for the expansion of Ts cells, which might promote further bench to clinic research.


Subject(s)
CD28 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Animals , Antigen-Presenting Cells/immunology , Cell Death/immunology , Cell Proliferation/physiology , Down-Regulation/immunology , Female , Granzymes/immunology , Humans , Mice , Up-Regulation/immunology
16.
Cancer Cell Int ; 20: 27, 2020.
Article in English | MEDLINE | ID: mdl-32002016

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) comprises the majority of kidney cancer death worldwide, whose incidence and mortality are not promising. Identifying ideal biomarkers to construct a more accurate prognostic model than conventional clinical parameters is crucial. METHODS: Raw count of RNA-sequencing data and clinicopathological data were acquired from The Cancer Genome Atlas (TCGA). Tumor samples were divided into two sets. Differentially expressed genes (DEGs) were screened in the whole set and prognosis-related genes were identified from the training set. Their common genes were used in LASSO and best subset regression which were performed to identify the best prognostic 5 genes. The gene-based risk score was developed based on the Cox coefficient of the individual gene. Time-dependent receiver operating characteristic (ROC) and Kaplan-Meier (KM) survival analysis were used to assess its prognostic power. GSE29609 dataset from GEO (Gene Expression Omnibus) database was used to validate the signature. Univariate and multivariate Cox regression were performed to screen independent prognostic parameters to construct a nomogram. The predictive power of the nomogram was revealed by time-dependent ROC curves and the calibration plot and verified in the validation set. Finally, Functional enrichment analysis of DEGs and 5 novel genes were performed to suggest the potential biological pathways. RESULTS: PADI1, ATP6V0D2, DPP6, C9orf135 and PLG were screened to be significantly related to the prognosis of ccRCC patients. The risk score effectively stratified the patients into high-risk group with poor overall survival (OS) based on survival analysis. AJCC-stage, age, recurrence and risk score were regarded as independent prognostic parameters by Cox regression analysis and were used to construct a nomogram. Time-dependent ROC curves showed the nomogram performed best in 1-, 3- and 5-year survival predictions compared with AJCC-stage and risk score in validation sets. The calibration plot showed good agreement of the nomogram between predicted and observed outcomes. Functional enrichment analysis suggested several enriched biological pathways related to cancer. CONCLUSIONS: In our study, we constructed a gene-based model integrating clinical prognostic parameters to predict prognosis of ccRCC well, which might provide a reliable prognosis assessment tool for clinician and aid treatment decision-making in the clinic.

17.
RSC Adv ; 10(7): 4166-4174, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-35492664

ABSTRACT

A series of Ni-La/Al2O3 catalysts for the syngas methanation reaction were prepared by a mechanochemical method and characterized by thermogravimetric analysis (TG-DTA), X-ray fluorescence (XRF), X-ray diffraction (XRD), N2 adsorption-desorption, H2 temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The calcination temperatures (350-700 °C) had significant impacts on the crystallite sizes and interactions between NiO and Al2O3. The catalyst calcined at 400 °C (cat-400) showed a 12.1% Ni dispersion degree and the maximum bound state of NiO (54%) through the Gaussian fitting of H2-TPR. Cat-400 also achieved the highest CO conversion, CH4 selectivity and yield. Cat-400 exhibited good stability and catalytic activity in a lifetime testing of 200 h. The deactivation of cat-400 was mainly caused by carbon deposition according to the data from XRD, TG-DTG and XPS.

18.
Transplant Proc ; 51(10): 3456-3462, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31733792

ABSTRACT

OBJECTIVE: To investigate the effects of IL (interleukin) 21 on CD8+ T cells stimulated by alloantigen in the presence of IL-15 in vitro. METHODS: CD8+ T cells sorted with MicroBeads from fresh human peripheral blood mononuclear cells were cocultured with antigen-presenting cells derived from HLA-A, -B, and -DR full-mismatched individuals for 9 days without any cytokines, in the presence of IL-15, IL-21, and IL-15 combined with IL-21, respectively. The proliferation and phenotypic characteristics of CD28+ and CD28- subsets were measured after 9 days of culture. RESULTS: The proliferation of CD8+ T cells can be promoted either by IL-15 alone or in combination with IL-21 compared with IL-21. Cells expanded in the presence of IL-15 are mainly CD8+CD28- T cells, while those expanded in the presence of IL-15 combined with IL-21 are mostly CD8+CD28+ T cells. In the presence of IL-15, most CD8+CD28+ T cells shifted to CD8+CD28- T cells during the process of proliferation, but In the presence of IL-15 combined with IL-21, CD8+CD28+ T cells didn't shift to CD8+CD28- T cells during proliferation, moreover, CD8+CD28- T cells cannot transform in reverse to CD8+CD28+ T cells. IL-21 combined with IL-15 can promote the expression of granzyme B and perforin in CD8+CD28+ and/or CD8+CD28- T cells compared with IL-15 alone. CONCLUSION: IL-21 cannot promote the proliferation of CD8+ T cells under allogeneic stimulation unless combined with IL-15. IL-21 prevents the loss of CD28 molecules caused by IL-15 but cannot promote its re-expression in CD28- T cells. CD8+ T cells expanded by IL-21 combined with IL-15 is characterized by cytotoxic phenotype.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interleukin-15/immunology , Interleukins/immunology , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/immunology , CD28 Antigens/immunology , Humans , Isoantigens/immunology
19.
J Org Chem ; 84(11): 6752-6756, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31072102

ABSTRACT

Aggregation-induced emission (AIE) molecules show all kinds of application in biological research, chemical sensing, and medical study. However, most of the reported molecules are based on the performance of the single molecular entity. In this paper, a molecular system for real-time sensing through combination of dynamic covalent chemistry and aggregation-induced emission was rationally designed and tested. The aggregated particles exhibit different fluorescence emission colors upon the addition of various kinds of chemical reagents. The LC-MS analysis reveals that the breakage, formation, and exchange of the disulfide bonds in the molecular system occur spontaneously upon different reagents (base/acid and cysteine), which leads to a change in the proportion of different components in the system accordingly. Meanwhile, the fluorescence emission of the AIE system exhibits blue/red shift accompanied by intensity changes. Moreover, the particle size of the aggregated molecules gradually increased with the change of the chemical environment, which could be the result of the nucleus growing through intermolecular hydrogen bonding among molecular components. Thus, the chemical environment change results in the interactions of molecules, which further leads to the variation of dynamic fluorescence emission and morphology. The result represents a promising future for a dynamic AIE molecular system in the bioimaging and sensing study.

20.
Cell Chem Biol ; 25(10): 1185-1194.e5, 2018 10 18.
Article in English | MEDLINE | ID: mdl-29983273

ABSTRACT

While traditional drug discovery continues to be an important platform for the search of new antibiotics, alternative approaches should also be pursued to complement these efforts. We herein designed a class of molecules that decorate bacterial cell surfaces with the goal of re-engaging components of the immune system toward Escherichia coli and Pseudomonas aeruginosa. More specifically, conjugates were assembled using polymyxin B (an antibiotic that inherently attaches to the surface of Gram-negative pathogens) and antigenic epitopes that recruit antibodies found in human serum. We established that the spacer length played a significant role in hapten display within the bacterial cell surface, a result that was confirmed both experimentally and via molecular dynamics simulations. Most importantly, we demonstrated the specific killing of bacteria by our agent in the presence of human serum. By enlisting the immune system, these agents have the potential to pave the way for a potent antimicrobial modality.


Subject(s)
Anti-Bacterial Agents/immunology , Epitopes/immunology , Escherichia coli Infections/therapy , Escherichia coli/immunology , Polymyxin B/immunology , Pseudomonas Infections/therapy , Pseudomonas aeruginosa/immunology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Caenorhabditis elegans , Epitopes/chemistry , Epitopes/pharmacology , Escherichia coli Infections/immunology , HEK293 Cells , Humans , Immunotherapy , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Polymyxin B/analogs & derivatives , Polymyxin B/pharmacology , Pseudomonas Infections/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...